Publication details

Journal Article

Using Poisson proximity-based weights for traffic flow state prediction

Uglickich Evženie, Nagy Ivan

: Neural Network World vol.33, 4 (2023), p. 291-315

: 8A21009, GA MŠk

: traffic counts, traffic flow state, cluster prediction, Poisson mixture, recursive mixture estimation

: 10.14311/NNW.2023.33.017

: http://library.utia.cas.cz/separaty/2023/ZS/uglickich-0575836.pdf

: http://nnw.cz/doi/2023/NNW.2023.33.017.pdf

(eng): The development of traffic state prediction algorithms embedded in intelligent transportation systems is of great importance for improving traffic conditions for drivers and pedestrians. Despite the large number of prediction methods, existing limitations still confirm the need to find a systematic solution and its adaptation to specific traffic data. This paper focuses on the relationship between traffic flow states in different urban locations, where these states are identified as clusters of traffic counts. Extending the recursive Bayesian mixture estimation theory to the Poisson mixtures, the paper uses the mixture pointers to construct the traffic state prediction model. Using the predictive model, the cluster at the target urban location is predicted based on the traffic counts measured in real time at the explanatory urban location. The main contributions of this study are: (i) recursive identification and prediction of the traffic state at each time instant, (ii) straightforward Poisson mixture initialization, and (iii) systematic theoretical background of the prediction approach. Results of testing the prediction algorithm on real traffic counts are presented.

: BB

: 10103