Publication details

Unsupervised Detection of Mammogram Regions of Interest

Journal Article

Haindl Michal, Mikeš Stanislav, Scarpa G.


serial: Lecture Notes in Computer Science vol.2007, p. 33-40

action: Knowledge-Based Intelligent Information and Engineering Systems, (Vietri sul Mare, IT, 12.09.2007-14.09.2007)

research: CEZ:AV0Z10750506

project(s): 507752, , 1ET400750407, GA AV ČR, 1M0572, GA MŠk, IAA2075302, GA AV ČR, 2C06019, GA MŠk

keywords: Unsupervised segmentation, mammography, Markov random fields

preview: Download

abstract (eng):

We present an unsupervised method for fully automatic detection of regions of interest containing fibroglandular tissue in digital screening mammography. The unsupervised segmenter is based on a combination of several unsupervised segmentation results, each in different resolution, using the sum rule. The mammogram tissue textures are locally represented by four causal monospectral random field models recursively evaluated for each pixel. The single-resolution segmentation part of the algorithm is based on the underlying Gaussian mixture model and starts with an over segmented initial estimation which is adaptively modified until the optimal number of homogeneous mammogram segments is reached.

abstract (cze):

Článek prezentuje neřízenou metodu rozpoznávání umožňující zcela automatickou detekci oblastí zájmu, které obsahují fibrozně-žlázovitou tkáň, z digitálních roentgenových mamogramů. Neřízená segmentační metoda kombinuje několik neřízených segmentačních výsledků, každý v jiném rozlišení, pomocí sumačního pravidla. Mamografické tkáňové textury jsou lokálně reprezentovány čtyřmi kauzálními modely náhodných polí rekurzivně pro každý pixel. Segmentační část metody pro jedno měřítko je založena na gaussovském směsovém modelu a začíná z přesegmentovaného odhadu, který se adaptivně mění, až se dosáhne optimální počet homogenních oblastí. Vlastnosti publikované metody jsou rozsáhle testovány na Digital Database for Screening Mammography (DDSM) z University of South Florida a na Prague Texture Segmentation Benchmark pomocí nejpoužívanějších segmentačních kriterií. Metoda dosahuje lepší výsledky než několik alternativních testovaných texturních segmentačních metod.

RIV: BD