Publication details

Texture Analysis of the Retinal Nerve Fiber Layer in Fundus Images via Markov Random Fields

Conference Paper (international conference)

Kolář R., Vácha Pavel


serial: World Congress on Medical Physics and Biomedical Engineering, p. 247-250 , Eds: Dössel O.

action: World Congress on Medical Physics and Biomedical Engineering, (Munich, DE, 07.11.2009-12.11.2009)

research: CEZ:AV0Z10750506

project(s): 1M0572, GA MŠk, 2C06019, GA MŠk

keywords: glaucoma, texture analysis, fundus image

preview: Download

abstract (eng):

This paper describes method for analysis of the texture created by retinal nerve fibers (RNF) via Markov Random Fields. The Causal Autoregressive Random (CAR) model is used to create a feature vector describing the changes in texture due to losses in RNF layer. It is shown that features based on CAR model can be used for discrimination between healthy and glaucomatous tissue using simple linear classifier. The classification error is slightly below 4% for the tested dataset.

abstract (cze):

Tento článek popisuje metodu pro analýzu textury, kterou vytváří na sítnici nervová vlákna (retinal nerve fibers - RNF), s využitím Markovovských náhodných polí. Používáme kauzální autoregresní náhodný model (Causal Autoregressive Random model - CAR), z kterého získáváme příznakový vektor popisující změny v textuře způsobené ztrátami v RNF vrstvě. Ukazujeme, že příznakový vektor založený na CAR modelu lze společně s lineárním klasifikátorem použít pro rozlišení mezi zdravou tkání a glaukomem. Chyba klasifikace je pro testovaný datový soubor slabě pod 4%.

RIV: BD