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1 Introduction

In the modern networked society there is an increasing demand on dissemination and sharing

of statistical information. To meet the expectations of users the statistical agencies release

two major forms of statistical data: the traditional tabular data and the sets of individual

respondent records called microdata. The advantage of releasing microdata instead of specific

pre-computed tables and statistics is the increased flexibility and availability of information

for the users. With appropriate microdata the users may examine unusual hypotheses and

find new issues beyond the usual scope of data providers.

In any case the fundamental obligation of data providers is to protect the privacy of

respondents. For this reason the explicit identifiers such as names, addresses and phone

numbers are commonly removed. However, anonymous respondents may by re-identified by

combining other data such as birth date, sex, ZIP code which uniquely pertain to specific

individuals. Different statistical disclosure control (SDC) methods have been proposed to

protect the confidentiality of data. With tabular data a disclosure can occur if a cell corre-

sponds to a very small group of respondents. This problem can be disabled by suppressing

cells, aggregating values, removing sensitive variables or by other techniques. In case of

microdata the easily identifiable quantitative variables may be transformed to discrete inter-

vals and sensitive qualitative variables may be combined to produce more general categories.

Rare data can be suppressed, swapped, modified or simulated. Obviously, disclosure limi-

tation procedures are connected with some information loss. There is a trade-off between

disclosure protection and the accuracy of data.
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There is an extensive literature on SDC techniques (for the most frequent references see,

e.g., Dalenius 1977, Bethlehem et al. 1990, Winkler 1998, Fienberg et al. 1998, Willenborg

and de Waal 2001) available but the underlying problem is still to be considered open. Let

us recall that a disclosure may be inferential (Duncan and Lambert 1989) without any actual

re-identification of a record and, in a special context, even a modified erroneous value may

harm the re-identified respondent. To produce safe and analytically valid public-use files

much extra work is needed and, simultaneously, there is always a rest of disclosure risk.

Thus, many statistical agencies release microdata for research purposes only, usually under

special licence agreements and through secure data archives. In general the non-disclosure

policy becomes a serious limitation of information dissemination.

In the last years we have developed an alternative approach to presentation of survey

results based on interactive statistical models (Grim 1992, Grim and Boček 1996, Grim et

al. 2001, Grim et al. 2004). We estimate the joint probability distribution of the original

microdata in the form of a multivariate distribution mixture with product components using

the EM algorithm (Dempster et al. 1977). The estimated product mixture can be used

directly as a knowledge base of the probabilistic expert system PES (Grim 1990, Grim

1994) and, in this way, we can derive the statistical information from the mixture model

without any further access to the original database. The statistical model provides flexibility

and comfort of information access which is comparable or even better than in the case of

microdata subsets. The resulting software product does not contain original microdata

and therefore it can be freely distributed without any limitation. The interactive model-

based re-identification of respondents is disabled by the decreasing accuracy of the estimated

distribution mixture at low probability levels. The balance between the accuracy of useful

statistical information and protection of anonymity of rare data is automatically controlled

by the underlying maximum-likelihood criterion. According to our best knowledge, in recent

literature there are no similar approaches proposed by other authors.

In this paper we describe the application of the proposed method to the individual

microdata records from the Czech Census in 2001. The statistical model has been computed

in the framework of a special cooperation project between the Czech Statistical Office, Prague

University of Economics and the Institute of Information Theory and Automation. The

aim of the project is to verify the applicability of the interactive statistical model to the
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next Czech Census in 2011. To illustrate a general possibility of information fusion from

different sources we have combined two originally separately treated databases of persons

and households. In particular, for every of the responding persons we have combined ten

variables from the database of individuals with fourteen variables from the corresponding

household.

The resulting source database contained 10 230 060 records, with about 1.5 millions

incomplete records including nearly three millions of non-response (missing) values. As

the primary purpose of the project has been to demonstrate the accuracy of the method

in case of ideal complete data, we decided first to estimate the model parameters from

the incomplete records and then to use the resulting distribution mixture to estimate and

substitute missing values. The final statistical model has been computed from the set of

complete microdata. The accuracy of the final model has been verified by comparing the

model probabilities with the relative frequencies of all statistically relevant combinations

of responses. We have found that the accuracy of model probabilities is comparable with

that of the relative frequencies computed from a randomly chosen 1 million subset of the

original microdata (without anonymization). The preliminary version of the final interactive

software product is to be offered free at http://ro.utia.cas.cz/dem.html.

The paper is organized as follows: In Section 2 we describe the choice of variables for the

statistical model, the EM algorithm and its properties. Section 3 deals with the problem

of missing data and in Section 4 we evaluate the accuracy of the estimated mixture. In

the concluding section we summarize advantages and different application aspects of the

proposed method.

2 Statistical Model of Census Data

The primary purpose of the considered statistical model is to reproduce the statistical rela-

tionship of a set of discrete variables as exactly as possible. The number of variables and

number of their values should be kept in reasonable bounds because of the well known trade-

off between the complexity of the estimated probability distribution and its accuracy. For

the sake of estimating the statistical model of the Czech Census 2001 we have chosen 24 cat-

egorial variables (questions) as listed in Table 1. In order to decrease the formal complexity

of the model we have applied less detailed coding of some variables (regional localization,
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age intervals). Simultaneously we have omitted too unambiguous variables which are less

informative and unproductive in combination with other variables. To illustrate a general

possibility of information fusion from different sources we have combined two originally sep-

arate databases of individuals and households. In particular, the first ten variables from

the database of individuals have been merged with fourteen variables of the corresponding

household. Note that in the resulting database the household-related response frequency

has a different meaning, namely the number of respondents living in such households. Thus,

instead of the properties of flats, we may analyze the housing conditions of respondents.

For every respondent we have a record of 24 variables. The third column in Table 1

contains the number of possible responses for the respective questions and the fourth column

contains the frequency of missing values in percent. The total number of non-response is

2933427. The uncertainty of variables expressed in percent of maximum Shannon entropy is

given in the last column.

Formally, we consider the source database to be a set of independent and identically

distributed observations of a random vector of 24 discrete finite valued random variables:

v = (v1, v2, . . . , v24) ∈ X , X = X 1 ×X 2 × . . .×X 24. (1)

We assume, that the unknown multivariate discrete probability distribution P ∗(x) of the

random vector v can be approximated by a finite distribution mixture of product compo-

nents:

P (x) =
M∑
m=1

wmF (x|m), F (x|m) =
24∏
n=1

pn(xn|m), x ∈ X ,
M∑
m=1

wm = 1. (2)

Here wm ≥ 0 is the a priori weight of the m-th component, pn(xn|m) are the conditional

(component specific) univariate distributions of the variables vn and M is the number of

components.

The standard way to estimate the parameters of the distribution mixture (2) is to use

the EM algorithm, which converges monotonously to a possibly local maximum or a saddle

point of the log-likelihood criterion (Schlesinger 1968, Dempster et al. 1977, Grim 1982,

Grim 1992, Grim and Boček 1996, Grim et al. 2001, Grim et al. 2004)).

We recall that any marginal distribution of the mixture (2) is easily obtained by ignoring

superfluous terms in the products. In view of this property, the discrete distribution mixture
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(2) is directly applicable as a knowledge base of the Probabilistic Expert System (PES) (cf.

Grim 1994, Grim and Boček 1996). The inference mechanism of PES can derive the statistical

information from the estimated model without any access to the original data. In particular,

considering a given input sub-vector

xC = (xi1 , xi2 , . . . , xik) ∈ XC , C = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , 24},

and an output variable xn, (n 6∈ C), we can write directly Eqs. for the related marginal

PC(xC) =
M∑
m=1

wmFC(xC |m), FC(xC |m) =
∏
i∈C

pi(xi|m), xC ∈ XC , (3)

and for the corresponding conditional distribution

Pn|C(xn|xC) =
Pn,C(xn,xC)

PC(xC)
=

M∑
m=1

Wm(xC)pn(xn|m), (PC(xC) > 0). (4)

Here Wm(xC) are the conditional component weights for the given subvector xC ∈ XC :

Wm(xC) =
wmFC(xC |m)∑M
j=1wjFC(xC |j)

. (5)

Let us note that the conditional distributions Pn|C(xn|xC) (conditional histograms) describe

the statistical properties of the sub-population specified by the sub-vector xC in terms of

all variables xn not included in xC . For a given input xC the formula (4) is applicable to

different variables n /∈ C with identical weights Wm(xC). Thus, for any fixed subvector xC ,

we obtain a set of histograms which characterize the corresponding subpopulation. We can

store extensive lists of sub-populations efficiently in terms of defining sub-vectors. In this

way different sub-populations can be quickly compared and characterized, e.g., by the most

apparent differences from the whole population. In addition, the analytical simplicity of the

statistical model suggests some new possibilities of information analysis.

3 Model Based Information Analysis

Another possibility to utilize the latent information potential of the statistical model is to

analyze the properties of sub-populations (cf. Grim et al., 2004). A natural basis of informa-

tion analysis is a suitably chosen list A of statistically relevant sub-populations which can be

specified by combining variables (cf. (16)). The general scheme of the considered information
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analysis can be summarized as follows: we order the virtual list A of statistically relevant

sub-populations (combinations of responses) according to a chosen statistical criterion and

display the initial part of the ordered list to the user. In some cases also the ascending

ordering of sub-populations (instead of descending one) could be of interest. In this section

we suggest some criteria which may be useful for different purposes.

A very simple criterion to order the sub-populations A is the conditional probability of a

specific value xn ∈ X n. We can order the sub-populations S(xC) from the list A according

to the highest conditional probability Pn|C(xn|xC) (cf. (4)). By displaying the initial part of

the ordered sub-population list we can identify, e.g., social groups or sub-populations which

are particularly hit by unemployment if the variable xn defines unemployed respondents.

Obviously, we should exclude from evaluation the “trivial” sub-populations S(xC) for which

n ∈ C since in these cases the probability Pn|C(xn|xC) is trivially either 1 or 0.

A simple modification of the conditional distribution Pn|C(xn|xC) is to use the uncondi-

tional probability

PnC(xn,xC) = Pn|C(xn|xC)P (xC) =
M∑
m=1

wmpn(xn|m)FC(xC |m). (6)

The preceding criterion can be easily generalized to a pair of specified values xn ∈ X n, xr ∈
X r:

Pnr|C(xn, xr|xC) =
M∑
m=1

Wm(xC)pn(xn|m)pr(xr|m). (7)

In this way the sub-populations can be ordered with respect to the highest relative frequency

of a pair of values, for example we can identify sub-populations with a high unemployment of

young people. Analogously a natural alternative to this criterion is to use the unconditional

probability

PnrC(xn, xr,xC) = Pnr|C(xn, xr|xC)P (xC) =
M∑
m=1

wmpn(xn|m)pr(xr|m)FC(xC |m) (8)

which corresponds to the estimated frequency |S|PnrC(xn, xr,xC) of the values xn, xr,xC .

Again, in the evaluation process we should exclude the combinations xC for which n, r ∈ C
because the corresponding probabilities PnrC(xn, xr,xC) equal to 1 or 0.

In some cases we could be interested in sub-populations where the conditional distribution

of a variable concentrates on an arbitrary single value (or small subset of values). For example
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we could look in general for sub-populations having a typical (prevailing) type of occupation.

In such a case a suitable choice would be to use the minimum entropy criterion

HxC
(X n) =

∑
xn∈X n

−Pn|C(xn|xC) logPn|C(xn|xC). (9)

In other words, in the sub-populations characterized with a low entropy HxC
(X n) the answer

to the n-th question is almost unique. Note that it would be rather difficult to identify such

sub-populations by other means, e.g., by counting the relative frequencies.

The statistical model also provides a general possibility to identify dependence between

categorial variables. Recall that the standard tool to characterize relation between two real

random variables is the correlation coefficient computed by means of the expected value of

the normalized product of the involved variables. Unfortunately, in case of discrete nomi-

nal variables like eye color, profession, marital status etc., the product of two variables is

undefined and there is no generally acceptable way to introduce a reasonable definition.

One possibility to analyze the statistical dependence between nominal (qualitative) ran-

dom variables is to use the statistical information. If Xn, Xr, n, r,∈ N are two discrete

random variables then their mutual statistical information can be expressed by means of the

Shannon formula

I(Xn, Xr) = H(Xn) +H(Xr)−H(Xn, Xr) (10)

where H(Xn), H(Xr), H(Xn, Xr) are the respective Shannon entropies:

H(Xn) =
∑

xn∈Xn

−Pn(xn) logPn(xn), Pn(xn) =
M∑
m=1

wmpn(xn|m), n ∈ N , (11)

H(Xn, Xr) =
∑

xr∈Xr

∑
xn∈Xn

−Pnr(xn, xr) logPnr(xn, xr), n, r ∈ N , (12)

Pnr(xn, xr) =
M∑
m=1

wmpn(xn|m)pr(xr|m). (13)

The Shannon information is zero if the two variables Xn, Xr are statistically independent

and it is maximum if one of the two variables uniquely defines the value of the other one.

The information criterion (10) can be used, e.g., to order the subpopulation list A according

to the statistical dependence between two chosen variables.
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Figure 1: Non-response frequency for individual questions. The number of incomplete
records is 1524240, the total number of missing values is 2933427.

Figure 2: Distribution of incomplete records according to the number of non-response. The
total number of missing responses is 2933427.

4 Missing Data - Non Response

A typical feature of census data is the presence of incomplete records. The census database

considered in this paper (cf. Table 1) included 1524240 incomplete records containing up

to eighteen missing values. The distribution of non-response according to variables is given

in the Fig. 1. The next Fig. 2 displays the distribution of non-response by the number of

missing values. The total number of missing values in our database was 2933427.

The problem of missing data is traditionally an important area of mathematical statistics

because most statistical methods cannot be applied to incomplete data. One can see that, by

simply omitting the incomplete records we would lose about 15% of records in our database.

Similarly, only five questions would remain should we ignore incomplete variables.

In particular, there are two ways of handling the problem. First we can extend the
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Figure 3: Frequencies for the question ”Type of stay” for subpopulation of Non-response for
the economic activity question (green) compared to whole population (red). Over 70% of
non-responding respondents have permanent residence but were absent.

statistical model by including the ”non-response” as an additional response alternative. This

allows us to analyze the statistical properties of the ”non-response” respondents.

Figure (3) shows a simple example of evaluating properties of the subpopulation of re-

spondents who did not answer the question 3 - Economic activity (green row) compared to

the whole population (red row). More than 70% of the green subpopulation are people who

have permanent residence but were currently absent.

5 Substitution of Missing Data

An important feature of estimating product mixtures is the possibility to modify the EM

algorithm to be directly applicable to incomplete data. In this case there is no necessity
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Figure 4: Properties of the respondents who had not filled in their age. It can be seen that
more often it was a man who had not told his age.

to substitute for the missing values, we estimate the mixture parameters from the available

data only. Formally, the type of missing values is irrelevant, the estimated model is capable

to utilize all statistical information available in the data (cf. Grim at al 2009 ...).

However, it appears that the mixture model estimated from incomplete data is biased by a

considerable error already at the level of unconditional marginals. In additional experiments

we have found that the accuracy of a model obtained from incomplete data is approximately

twice worse than that of the comparable model computed from complete data.

Let us recall that the main purpose of our project has been to verify the possibility

to reproduce the statistical properties of a large set of microdata and therefore the model

accuracy is of primary importance. For this reason we decided to solve the estimation

problem in two steps. First we estimated the distribution mixture (2) from incomplete data

by means of the modified EM algorithm. The resulting mixture (M=10000) has been used
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to replace missing values by estimates. And in the second step we have used the completed

database to estimate the final distribution mixture.

It is obvious that the imputation of missing values may affect the final model accuracy.

There is no direct possibility to verify if the replacement of missing values has been done

correctly but we can simulate an analogous situation by estimating known values. In par-

ticular, for each variable separately, we have chosen randomly 105 records with available

value of the tested variable. Then we computed the corresponding estimate of this value and

compared it with the true original. The results of the imputation test are summarized in the

Table 2, which provides an additional information about the accuracy of the final statistical

model (M=15000). The third column contains the number of non-response and in the fourth

column we list the percentage of the correctly estimated values. The number in parentheses

corresponds to the trivial imputation of the most frequent response. Expectedly, the im-

putation accuracy is variable-dependent. In some cases the success of global imputation of

the most frequent value is comparable with the statistical model (Nos. 2, 4, 5, 12, 14, 20,

22) but the improvement achieved by the maximum-likelihood estimate is often considerable

(Nos. 1, 3, 8, 9, 10, 13, 15, 17, 19, 23). In the mean 73% of missing values would be correctly

identified by the maximum-likelihood estimates. The last column contains the number of

the probably correctly replaced non-response from the third column.

6 Accuracy of the Statistical Model

Let us recall that the primary purpose of the estimated model is to reproduce the statistical

properties of the original data. In the domain of statistical surveys we usually specify

the properties of sub-populations by combining responses. Therefore the statistical model

should reproduce the empirical frequencies of different properties as exactly as possible. In

particular, in order to verify the model accuracy, we compare the empirical frequency of

different combinations of responses with the estimates derived from the statistical model.

Considering an elementary property defined by a sub-vector of responses xC , we denote

S(xC) = {y ∈ S : yC = xC}, N(xC) = |S(xC)|, xC = (xi1 , . . . , xik) ∈ XC (14)

where S(xC) is the subset of respondents (a subpopulation) with the property xC and N(xC)

is the (empirical) frequency of the property xC in the census population S. Obviously, the
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frequency N(xC) can be estimated from the statistical model (2) as the product of the

probability P (xC) and the population size |S|:

N̂(xC) = |S|P (xC), P (xC) =
M∑
m=1

wm
k∏
j=1

pij (xij |m) (15)

It appears that, ideally, we should compare the estimated frequency N̂(xC) with the empir-

ical value N(xC) for all possible elementary combinations of values xC . However, there are

two important limitations.

Recall first, that we are not interested to reproduce small frequencies. On the contrary,

the decreasing accuracy of the model at low probabilities is an important confidentiality

protecting property. For this reason we decided to evaluate the accuracy of the estimates

N̂(xC) only for the empirical frequencies N(xC) greater than a suitably chosen threshold

Nε. In order to specify the threshold frequency Nε we confine ourselves only to “statistically

relevant” properties xC , the frequency of which may differ from the assumed “true” unknown

frequency N∗(xC) by less than ε = 5% (cf. Appendix II). In particular, if we confine ourselves

to the properties xC satisfying the inequality N(xC) > 1612 (i.e., Nε = N0.05 = 1612), then,

according to the central limit theorem of probability theory, the empirical frequency N(xC)

of the property xC in the population S may differ from the unknown “true” frequency

N∗(xC) by less than 5% (at the confidence level 0.95).

The second limitation has a computational reason. The number of all properties xC

specified by all possible combinations of responses is too high and the evaluation would be

too time-consuming. For this reason we decided to verify the model accuracy by considering

combinations of at most five responses. As a result we obtained a list A5 of about 26 millions

“statistically relevant” properties xC along with the corresponding empirical frequencies

A5 = {xC = (xi1 , . . . , xi5) : N(xC) > 1612}, |A5| = 26425727. (16)

A natural way to measure the accuracy of the statistical model (2) is to compute the mean

absolute error Ea of the estimated frequencies N̂(xC) for the properties xC ∈ A5:

Ea =
1

|A5|
∑

xC∈A5

|P (xC)|S| −N(xC)|, P (xC) =
M∑
m=1

wm
5∏
j=1

pij (xij |m) (17)

where P (xC) is the probability of the combination xC computed by means of the mixture

model (2). However, as it can be seen, the criterion Ea does not differentiate between errors
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of large and small estimates. For this reason we have introduced the following mean relative

error criterion

Er =
100

|A5|
∑

xC∈A5

|P (xC)− N(xC)

|S | |
N(xC)

|S |
=

100

|A5|
∑

xC∈A5

|P (xC)|S| −N(xC)|
N(xC)

(18)

which is more sensitive in this respect since the same absolute difference of frequencies is less

important if the empirical frequency N(xC) is high and more important for lower N(xC).

We have used the criteria Ea and Er to evaluate the accuracy of the final distribution

mixture (2). Table ?? contains the results obtained by applying both criteria to the list of

properties A5 (third column) and, for comparison, to the list A4 of properties specified by

maximally four responses (second column). For both of the considered tests Table ?? shows

the mean relative and mean absolute error and the corresponding standard deviations. In

addition we have computed the maximum relative and absolute error and also the number

of relative errors exceeding 100%. The mean relative error was 4.2% in case of the list

A5 and 4.1% in case of the list A4, the corresponding absolute error was 338 and 460

respondents respectively. Since all other results are comparable, too, we may assume that a

more extensive test experiment would not yield essentially different values. We recall that by

combining more than five responses we would obtain mostly very small frequencies N(xC)

that would fall below the threshold Nε and therefore the resulting list would not be much

longer than A5.

Let us recall that the relative error in the criterion Er is invariant with respect to arbitrary

norming. Consequently, the mean error of any displayed histogram column is 4.2%. In order

to illustrate the distribution of relative errors in more detail we include Table ??. As it can

be seen, for very small empirical frequencies (1612 < N(xC) < 3000) the mean relative error

is 6.12% and quickly decreases for greater values of N(xC) (larger sub-populations). Our

interactive software disables evaluation of sub-populations S(xC) smaller than the threshold

value N0.05 = 1612 and indicates any histogram column which corresponds to a sub-threshold

frequency.

Obviously, the results in Table ?? strongly depend on the chosen sub-population threshold

Nε. It is therefore unclear whether the achieved mean relative error 4.2% is to be considered

too high or low enough. To answer this question we have compared the accuracy of our

mixture model with the reproduction accuracy of a randomly chosen subset of 1 million
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individual microdata records (10% of the original data set). Note that the standard way of

statistical information dissemination by means of subsets of anonymized microdata provides

similar comfort and flexibility in evaluating the statistical properties of survey data as the

interactive statistical model. In particular, we can estimate the empirical frequencies N(xC)

by using a representative subset of microdata. For the sake of comparison with the statistical

model we have evaluated the accuracy of the microdata subset in the same way as in the

Table ??. As it can be seen in Table 3, at reproducing the empirical frequencies the accuracy

of the 10% microdata subset is marginally better than the statistical model. In practical

situation the results in the Table 3 would be most likely worse due to errors introduced by

the necessary anonymization process which has been omitted in our test case.

7 Interactive Data Presentation

OBRÁZKY Z APLIKACE

8 Concluding Remarks

The so-far most informative way to disseminate statistical information is to release repre-

sentative subsets of anonymized microdata. With appropriate microdata the users have the

full freedom to examine arbitrary hypotheses and issues beyond the usual scope of data

providers. Unfortunately, both the choice of a subset of the original microdata (typically

about one million of individual records) and the indispensable anonymization procedures

may negatively influence the statistical validity of the contained information. Moreover,

there is always some residual disclosure risk and for this reason the statistical agencies re-

lease microdata for research purposes only, usually under special licence agreements and

through secure data archives.

In view of these facts the primary purpose of the considered statistical model has been

to make the census results freely available in a new user-friendly way with a well guaranteed

confidentiality of data. The resulting interactive software provides flexibility and user com-

fort analogous to the sets of anonymized microdata at a comparable or even higher level of

accuracy. In addition, the analytical simplicity of the underlying distribution mixture opens

new possibilities of information oriented data analysis (data mining) based on efficient eval-
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uation of a virtual list of several hundreds of thousands of sub-populations. The statistical

model does not contain the original data and therefore the final interactive software product

can be distributed without any confidentiality concerns.

The representation accuracy of the statistical model has been analyzed in detail. We

have shown that the resulting distribution mixture can be used to estimate the probability

of complete or incomplete records with a high reliability. This property can be used to

estimate missing values but also to identify unusual or possibly incorrect records. The

identification of untypical records is a crucial step of most of the anonymization algorithms,

but the application of SDC techniques becomes superfluous in case of statistical models.
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Text of question Number of Non-response Shannon
(name of variable) values in % entropy in %

1. Region of residence 14 0.00 96.88
2. Type of residence 3 0.00 32.92
3. Economic activity 10 0.80 67.80
4. Birth place (relatively) 6 1.95 74.65
5. Religion 6 0.00 60.57
6. Occupation type 14 3.89 68.33
7. Sex 2 0.00 99.95
8. Marital status 4 0.55 81.01
9. Education 14 1.11 78.04

10. Age 9 0.03 96.09
11. Category of flat 5 0.53 27.81
12. Bathroom 5 0.59 14.02
13. Size of flat 7 0.64 80.62
14. Internet and PC 4 2.85 49.11
15. Legal relation to flat 9 0.39 72.43
16. Gas supply 3 0.78 64.54
17. Number of rooms over 8m2 7 0.64 80.57
18. Number of cars in household 4 3.39 71.32
19. Number of persons in flat 6 0.00 93.79
20. Vacational property 6 7.45 42.10
21. Telephone in flat 5 1.80 80.88
22. Water supply 4 0.35 8.02
23. Type of heating 6 0.53 74.81
24. Toilet 6 0.50 16.73

Table 1: List of questions included in the statistical model of the Czech Census 2001. The third
column contains the number of possible responses, percentage of missing values (non-response)
is given in the fourth column. There are 1524240 incomplete records, the total number of non-
response is 2933427. Uncertainty of variables in % of maximum Shannon entropy is given in the
last column.
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Text of question Number of Successful Successful
(name of variable) non-response imputation in % imputation

1. Region of residence 0 27.49 (12.41) 0
2. Type of residence 0 90.35 (89.48) 0
3. Economic activity 82195 88.02 (44.08) 72348
4. Birth place (relatively) 199516 56.36 (53.52) 112447
5. Religion 0 66.27 (59.04) 0
6. Occupation type 397835 67.64 (50.62) 269096
7. Sex 0 67.91 (51.30) 0
8. Marital status 56514 82.91 (46.63) 46856
9. Education 113127 48.36 (19.29) 54708

10. Age 3483 59.22 (16.71) 2063
11. Category of flat 53861 97.48 (89.37) 52504
12. Bathroom 50987 98.90 (95.91) 50426
13. Size of flat 65554 63.22 (38.48) 41443
14. Internet and PC 291281 81.12 (79.15) 236287
15. Legal relation to flat 40490 63.49 (39.70) 25707
16. Gas supply 79631 75.94 (63.84) 60472
17. Number of rooms over 8m2 65525 63.48 (38.76) 41595
18. Number of cars in household 346471 66.97 (51.77) 232032
19. Number of persons in flat 0 49.48 (29.27) 0
20. Vacational property 762707 80.39 (78.11) 613140
21. Telephone in flat 183714 57.36 (43.93) 105378
22. Water supply 35415 99.39 (98.08) 35199
23. Type of heating 53861 76.90 (41.45) 41419
24. Toilet 51350 97.98 (94.32) 50313

Total: 2 933 427 73.06 (61.35) 2 143 326

Table 2: Accuracy of the estimation of missing values. The third column contains the number of
non-response. In the fourth column we list the percentage of correctly estimated responses. The
numbers in parentheses correspond to the trivial imputation of the most frequent response. In the
mean 73% of missing values would be correctly identified by the maximum-likelihood imputation
procedure. The last column lists expected numbers of the correctly replaced non-response from the
third column. The total number of non-response is 2933427.
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Used model Model with Extended model

substituted values with missing values

Mean relative error in %: 4.07 4.10
Standard deviation of the relative error: 6.33 5.83
Maximum relative error of the model in %: 240.84 250.90
Number of relative errors exceeding 100%: 925 1037

Mean absolute error: 470 459
Standard deviation of the absolute error: 951 791
Maximum absolute error of the model: 45779 56808

Number of combinations tested: 3503448 3895873

Table 3: Mean relative and mean absolute error of the two statistical models with M=15000
components - one computed using original data with missing values, the second using data where
missing data were substituted. It can be seen that the models are of comparable quality.
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