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Representation of Text Documents

PURPOSE: automatic sorting of text documents into predefined classes

text document: d = 〈wi1 , . . . ,wik 〉 ≈ list of terms from a vocabulary V

vocabulary of terms: V = {t1, . . . , tN} ≈ set of informative terms
(obtained from training data by removing stop words and low-frequency
words and by stemming, typically N ≈ 104)

document as a “bag of words” (only frequency of terms is considered)

x = x(d) = (x1, . . . , xN) ∈ X = =N ≈ vector of integers

xn ≈ the frequency of the term tn ∈ V
|x| =

∑N
n=1 xn ≈ the length of document x

Remark: The “bag of words” representation disregards the position of words
in the original documents.
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Statistical Approach to Document Classification

probabilistic description:

P(x|c)p(c), c ∈ C: conditional distributions of classes

C = {c1, . . . , cJ} ≈ set of classes with a priori probabilities p(c), c ∈ C

decision making based on Bayes formula:

p(c |x) =
P(x|c)p(c)

P(x)
, P(x) =

∑
c∈C

p(c)P(x|c)

the “naive” Bayes classifier: conditional independence of variables

P(x|c) =
∏
n∈N

fn(xn|c), c ∈ C, N = {1, . . . ,N}

Remark: Naive Bayes classifier disregards statistical dependencies between
vocabulary terms. Despite many attempts no essential improvement has been
achieved by considering the dependencies in a way (cf. e.g. Lewis 1998).
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Application of Poisson Mixtures

Idea: approximation of P(x|c) by mixtures of Poisson distributions

P(x|c) =
∑

m∈Mc

f (m)
∏
n∈N

fn(xn|λmn), f (m) ≥ 0,
∑

m∈Mc

f (m) = 1

fn(xn|λmn) =
(λmn)

xn

xn!
e−λmn , (|x| =

N∑
n=1

xn)

fn() ≈ probability that tn ∈ V occurs xn-times in a document of length |x|
λmn ≈ mean frequency of the term tn in a document of a given length |x|

the document length may be different → λmn = θmn|x|

P(x|c) =
∑

m∈Mc

F (x|θm)f (m) =
∏
n∈N

fn(xn|θmn|x|) =
∏
n∈N

(θmn|x|)xn

xn!
e−θmn|x|

F (x|θm) ≈ product Poisson distributions

Remark: Mixture of product Poisson distributions has M(N + 1) parameters
⇒ very high number in case of documents.
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Structural Mixture Model

“structural” multivariate Poisson mixtures:

P(x|c) =
∑

m∈Mc

F (x|θ0)G (x|θm,φm)f (m), c ∈ C

F (x|θ0) ≈ “background” probability distribution common to all classes

F (x|θ0) =
∏
n∈N

fn(xn|θ0n|x|) =
∏
n∈N

(θ0n|x|)xn

xn!
e−θ0n|x|

G (x|θm,φm) ≈ component functions
φmn ∈ {0, 1} ≈ structural parameters

G (x|θm,φm) =
∏
n∈N

[
fn(xn|θmn|x|)
fn(xn|θ0n|x|)

]φmn

=
∏
n∈N

[(
θmn

θ0n

)xn

e(θ0n−θmn)|x|
]φmn

F (x|θ0) can be canceled in the Bayes formula:

p(c |x) =
p(c)

∑
m∈Mc

G (x|θm,φm)f (m)∑
c∈C p(c)

∑
j∈Mc

G (x|θj ,φj)f (j)
.
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Structural Mixture Model Estimation

log-likelihood function:

L =
1

|Sc |
∑

x∈S c

log[
∑

m∈Mc

G (x|θm,φm)f (m)], Sc = {x1, . . . , xKc}

EM algorithm:

q(m|x) =
G (x|θm,φm)f (m)∑
j∈Mc

G (x|θj ,φj)f (j)
, m ∈Mc , n ∈ N , x ∈ Sc

x̃ (m)
n =

1

|Sc |
∑

x∈S c

xnq(m|x), |x̄|(m) =
1

|Sc |
∑

x∈S c

|x|q(m|x)

f
′
(m) =

1

|Sc |
∑

x∈S c

q(m|x), θ
′

mn =
x̃

(m)
n

|x̄|(m)

φ
′

mn =

{
1, γ

′

mn ∈ Γ
′

r ,

0, γ
′

mn 6∈ Γ
′

r ,
, γ

′

mn = x̃ (m)
n log

θ
′

mn

θ0n
+ |x̄|(m)(θ

′

0n − θmn)

Γ
′

r is the set of r highest quantities γ
′

mn
Proof
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Example 1: Classification of REUTERS text documents

REUTERS text documents:

(small classes and multiply labeled documents removed)
8941 documents partitioned into 33 different classes
10105 vocabulary terms (by removing stop words and after stemming)
6431 training documents, 2510 test documents (≈ APTE split)

Experiment No. 1 2 3 4 5

Components M 33 33 35 35 43

Parameters
∑

φmn 333465 208366 285220 327184 201417

Parameters [in %] 100.0 62.5 80.6 92.5 46.4

Classification Errors 155 156 162 152 147

Classif. Error [in %] 6.17 6.21 6.45 6.07 5.86

Remark. The best classification result (experiment 5) is only slightly better
than the “naive” Bayes classification accuracy (experiment 1).
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Example 2: Classification of 20 NEWSGROUPS documents

20 NEWSGROUPS text documents:

19956 documents partitioned nearly evenly into 20 different classes
31826 vocabulary terms (by removing stop words and after stemming)
13314 training documents, 6632 test documents
(random partition, no multiple labels)

Experiment No. 1 2 3 4 5

Components M 20 40 40 60 80

Parameters
∑

φmn 636520 1204262 1102073 1276602 1024782

Parameters [in %] 100.0 94.6 86.6 66.8 40.2

Classification Errors 1406 1379 1370 1362 1412

Classif. Error [in %] 21.20 20.79 20.66 20.54 21.29

Remark. The results differ only by several tens of erroneously classified
documents, the “naive” Bayes classification is only slightly worse.
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Concluding Remarks

Properties of Structural Poisson Mixtures

enable statistically correct subspace approach to Bayes classification
of documents

the class-conditional distributions and even individual components may
be defined on different subspaces

⇒ the number of parameters in the conditional distributions can be
reduced without restricting the set of vocabulary terms

Classification Performance

the recognition error slightly decreases with increasing model complexity
and simultaneously decreasing number of parameters

probable reason: the number of documents in the training data sets is
not sufficient to utilize more complex statistical properties
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Proof of the Monotonic Property

Kullback-Leibler information divergence is nonnegative:

1

|S|
∑
x∈S

[
∑

m∈M
q(m|x) log

q(m|x)
q′(m|x)

] ≥ 0

by making substitution we can write

1

|S|
∑
x∈S

log
P

′
(x)

P(x)
− 1

|S|
∑
x∈S

∑
m∈M

q(m|x) log

[
f

′
(m)G (x|θ

′

m,φ
′

m)

f (m)G (x|θm,φm)

]
≥ 0.

L
′
− L ≥

∑
m∈M

f
′
(m) log

f
′
(m)

f (m)
+

∑
m∈M

1

|S|
∑
x∈S

q(m|x) log

[
G (x|θ

′

m,φ
′

m)

G (x|θm,φm)

]
the first sum on the right is nonnegative and therefore

L
′
− L ≥

∑
m∈M

1

|S|
∑
x∈S

q(m|x) log

[
G (x|θ

′

m,φ
′

m)

G (x|θm,φm)

]
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Proof of the Monotonic Property

further, making substitution, we obtain

L
′
− L ≥

∑
m∈M

∑
n∈N

1

|S|
∑
x∈S

q(m|x) log

[
(

θ
′
mn

θ0n
)xn exp (θ0n − θ

′

mn)|x|
]φ

′
mn

[
( θmn

θ0n
)xn exp (θ0n − θmn)|x|

]φmn

the last inequality can be rewritten in the form

L
′
− L ≥

∑
m∈M

∑
n∈N

[
φ

′

mnγmn(θ
′

mn)− φmnγmn(θmn)
]

where

γmn(θmn) = x̃ (m)
n log

θmn

θ0n
+ |x̄|(m)(θ0n − θmn)

in view of the definition of θ
′

mn and φ
′

mn we can write Return

θ
′

mn =
x̃

(m)
n

|x̄|(m)
= arg max

θmn

{γmn(θmn)} ⇒ γmn(θ
′

mn) ≥ γmn(θmn)

⇒ L
′
− L ≥

∑
m∈M

∑
n∈N

[
φ

′

mn − φmn

]
γmn(θ

′

mn) ≥ 0
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