## EM Cluster Analysis for Categorical Data

Jiří Grim

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic, Prague

Department of Pattern Recognition

http://www.utia.cas.cz/RO

Conference S+SSPR 2006, Hong Kong 2006

## Outline

(1) Conditional Independence Models

- Product Mixture: Conditional Independence Model
- EM Algorithm For Discrete Product Mixtures
- Application to Cluster Analysis
(2) Problem of Identifiability
- Definition of Identifiability
- Proof of Non-Identifiability of Discrete Product Mixtures
- Unique Solution by Additional Constraints
(3) Example: Mixture of Multivariate Bernoulli Distributions
- Re-Identification of Multivariate Bernoulli Mixture
- Comparison of the Original and Re-Estimated Parameters

4 Concluding Remarks

## Product Mixture: Conditional Independence Model

discrete random variables: $\quad \xi_{n} \in \mathcal{X}_{n}, \quad n \in \mathcal{N}, \quad \mathcal{N}=\{1, \ldots, N\}$ $\mathcal{X}_{n}$ : finite sets of categorical values (no ordering)
random vector: $\quad \boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{N}\right) \in \mathcal{X}, \quad \mathcal{X}=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{N}$
discrete random (latent) variable: $\mu \in \mathcal{M}, \mathcal{M}=\{1, \ldots, M\}$

$$
P\{\mu=m\}=w_{m}, \quad m \in \mathcal{M}, \quad \sum_{m \in \mathcal{M}} w_{m}=1
$$

ASSUMPTION: variables $\xi_{n}$ are conditionally independent given $\mu$

$$
P\{\boldsymbol{\xi}=\mathbf{x} \mid \mu=m\}=F(\mathbf{x} \mid m)=\prod_{n \in \mathcal{N}} f_{n}\left(x_{n} \mid m\right)
$$

model of conditional independence (product mixture):

$$
P(\mathbf{x})=\sum_{m \in \mathcal{M}} w_{m} F(\mathbf{x} \mid m)=\sum_{m \in \mathcal{M}} w_{m} \prod_{n \in \mathcal{N}} f_{n}\left(x_{n} \mid m\right)
$$

## EM Algorithm For Discrete Product Mixtures

independent observations of the random vector $\boldsymbol{\xi}$ :

$$
\mathcal{S}=\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(J)}\right\}, \quad \mathbf{x}^{(j)} \in \mathcal{X}
$$

log-likelihood function:

$$
L=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} \log \left(\sum_{m \in \mathcal{M}} w_{m} \prod_{n \in \mathcal{N}} f_{n}\left(x_{n} \mid m\right)\right) \rightarrow \max
$$

EM iteration equations: $\quad(m \in \mathcal{M}, \quad \mathbf{x} \in \mathcal{S})$

$$
\begin{gathered}
q(m \mid \mathbf{x})=\frac{w_{m} \prod_{n \in \mathcal{N}} f_{n}\left(x_{n} \mid m\right)}{\sum_{j \in \mathcal{M}} w_{j} \prod_{n \in \mathcal{N}} f_{n}\left(x_{n} \mid j\right)}, \quad w_{m}^{\prime}=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} q(m \mid \mathbf{x}) \\
f_{n}^{\prime}(\xi \mid m)=\frac{1}{\sum_{\mathbf{x} \in \mathcal{S}} q(m \mid \mathbf{x})} \sum_{\mathbf{x} \in \mathcal{S}} \delta\left(\xi, x_{n}\right) q(m \mid \mathbf{x}), \quad \xi \in \mathcal{X}_{n}
\end{gathered}
$$

MONOTONIC PROPERTY: $\quad L^{(t+1)}-L^{(t)} \geq 0, \quad t=0,1,2, \ldots$
$\Rightarrow$ convergence to local/global maximum of the log-likelihood function
$\Rightarrow$ starting-point dependent estimates

## Application of Product Mixtures to Cluster Analysis

CATEGORICAL DATA: the discrete space $\mathcal{X}$ has no structure in itself, conditional independence assumption is the only source of information about possible clusters ("latent classes"):

$$
P(\mathbf{x})=\sum_{m \in \mathcal{M}} w_{m} F(\mathbf{x} \mid m)=\sum_{m \in \mathcal{M}} w_{m} \prod_{n \in \mathcal{N}} f_{n}\left(x_{n} \mid m\right)
$$

the values of "latent variable" $m \in \mathcal{M}$ correspond to "hidden causes" (remove statistical dependences between $\xi_{1}, \ldots, \xi_{N}$ )

$$
q(m \mid \mathbf{x})=\frac{w_{m} F(\mathbf{x} \mid m)}{\sum_{j \in \mathcal{M}} w_{j} F(\mathbf{x} \mid j)}, \quad d(\mathbf{x})=\arg \max _{m \in \mathcal{M}}\{q(m \mid \mathbf{x})\}
$$

$q(m \mid \mathbf{x})$ : membership function of the $m$-th cluster

$$
\Re=\left\{\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{M}\right\}, \quad \mathcal{S}_{m}=\{\mathbf{x} \in \mathcal{S}: d(\mathbf{x})=m\}, \quad \mathcal{S}=\cup_{m \in \mathcal{M}} \mathcal{S}_{m}
$$

Remark. Clusters $\mathcal{S}_{m}$ are defined by the mixture components $w_{m} F(\mathbf{x} \mid m)$. If the mixture $P(\mathbf{x})$ is not defined uniquely, then the result of cluster analysis becomes questionable.

## Discrete Product Mixtures Are Non-Identifiable

## Definition of Identifiability

A class of distribution mixtures $\mathcal{F}$ is identifiable if the equality of any two mixtures $P, P^{\prime}$ from $\mathcal{F}$

$$
P(\mathbf{x})=\sum_{m \in \mathcal{M}} w_{m} F(\mathbf{x} \mid m)=\sum_{m \in \mathcal{M}^{\prime}} w_{m}^{\prime} F^{\prime}(\mathbf{x} \mid m)=P^{\prime}(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}
$$

implies that the parameters of the two mixtures $P, P^{\prime}$ are identical, except for order of components.

## Lemma

Any discrete distribution mixture

$$
P(\mathbf{x})=\sum_{m \in \mathcal{M}} w_{m} F(\mathbf{x} \mid m), \quad F(\mathbf{x} \mid m)=\prod_{n \in \mathcal{N}} f_{n}\left(x_{n} \mid m\right)
$$

can be equivalently described by infinitely many different parameter sets if at least one of the univariate conditional distributions $f_{n}\left(x_{n} \mid m\right)$ is non-degenerate in the sense that $f_{n}\left(x_{n} \mid m\right)<1$, for all $x_{n} \in \mathcal{X}_{n}$.

## Discrete Product Mixtures Are Non-Identifiable

Proof. If $f_{n}\left(x_{n} \mid m\right)$ is a non-degenerate distribution then we can write

$$
f_{n}(\cdot \mid m)=\alpha f_{n}^{(\alpha)}(\cdot \mid m)+\beta f_{n}^{(\beta)}(\cdot \mid m), \quad f_{n}^{(\alpha)}(\cdot \mid m) \neq f_{n}^{(\beta)}(\cdot \mid m)
$$

where $0<\alpha<1, \beta=1-\alpha$. By substitution we obtain

$$
w_{m} F(\mathbf{x} \mid m)=w_{m}^{(\alpha)} F^{(\alpha)}(\mathbf{x} \mid m)+w_{m}^{(\beta)} F^{(\beta)}(\mathbf{x} \mid m), \quad \mathbf{x} \in \mathcal{X}
$$

where $F^{(\alpha)}(\mathbf{x} \mid m), F^{(\beta)}(\mathbf{x} \mid m)$ are different components:

$$
\begin{aligned}
& w_{m}^{(\alpha)}=\alpha w_{m}, \quad F^{(\alpha)}(\mathbf{x} \mid m)=f_{n}^{(\alpha)}\left(x_{n} \mid m\right) \prod_{i \in \mathcal{N}, i \neq n} f_{i}\left(x_{i} \mid m\right) \\
& w_{m}^{(\beta)}=\beta w_{m}, \quad F^{(\beta)}(\mathbf{x} \mid m)=f_{n}^{(\beta)}\left(x_{n} \mid m\right) \prod_{i \in \mathcal{N}, i \neq n} f_{i}\left(x_{i} \mid m\right)
\end{aligned}
$$

$\Rightarrow$ The original mixture is described equivalently by non-trivially different parameters.

## Unique Mixture Parameters by Additional Constraints

## EM Algorithm \& Sequential Adding of Components

- starting with one component: $M=1$, uniform distributions $f_{n}\left(x_{n} \mid 1\right)$
- adding new component after sufficient convergence ( $\left.\frac{L^{\prime}-L}{L}<\epsilon\right)$ : $M \rightarrow M+1$, uniform distributions $f_{n}\left(x_{n} \mid M+1\right), \quad w_{M+1}=0.5$
- repeat adding of components until the new weight is "suppressed"


## Properties:

$\oplus$ the method avoids random influences of initial values
$\oplus$ the resulting mixture is defined (almost) uniquely
$\oplus$ newly added component fits to currently "outlying" data
$\oplus$ reasonable choice of a proper number of components
$\ominus$ the method is based on heuristical idea, no theoretical arguments
$\ominus$ adding new components disturbs preceding convergence phase

## Artificial Problem: Re-Identification of Bernoulli Mixture

mixture of multivariate Bernoulli distributions

$$
P^{*}(\mathbf{x})=\sum_{m \in \mathcal{M}} w_{m} \prod_{n \in \mathcal{N}} \theta_{n m}^{x_{n}}\left(1-\theta_{n m}\right)^{1-x_{n}}, \quad \mathbf{x} \in\{0,1\}^{N}, \quad 0<\theta_{n m}<1
$$

SOLUTION: re-estimation of parameters $w_{m}, \theta_{n m}$ by using weighted modification of EM algorithm:
$L^{*}=\lim _{|\mathcal{S}| \rightarrow \infty} \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} \log \left[\sum_{m \in \mathcal{M}} w_{m} F(\mathbf{x} \mid m)\right]=\sum_{x \in \mathcal{X}} P^{*}(\mathbf{x}) \log \left[\sum_{m \in \mathcal{M}} w_{m} F(\mathbf{x} \mid m)\right]$
modified EM iteration equations: $(m \in \mathcal{M}, \mathbf{x} \in \mathcal{X})$

$$
\begin{gathered}
q(m \mid \mathbf{x})=\frac{w_{m} F(\mathbf{x} \mid m)}{\sum_{j \in \mathcal{M}} w_{j} F(\mathbf{x} \mid j)}, \quad w_{m}^{\prime}=\sum_{\mathbf{x} \in \mathcal{X}} P^{*}(\mathbf{x}) q(m \mid \mathbf{x}) \\
\theta_{n m}^{\prime}=\frac{1}{\sum_{\mathbf{x} \in \mathcal{X}} P^{*}(\mathbf{x}) q(m \mid \mathbf{x})} \sum_{\mathbf{x} \in \mathcal{X}} x_{n} P^{*}(\mathbf{x}) q(m \mid \mathbf{x}), \quad \xi \in \mathcal{X}_{n}
\end{gathered}
$$

Remark. Computation is equivalent to infinite data set $\mathcal{S}$ (avoids random small-sample fluctuations).

## Comparison of the Original and Re-Estimated Parameters

original parameters: $M=8, N=16$, Carreira-Perpignan et.al. (2000) (the weights $P^{*}(\mathbf{x})$ computed for all the 65536 binary vectors $\mathbf{x} \in \mathcal{X}$ )
comparison of original and re-estimated parameters (upper $\times$ lower row):

| $w_{m}$ | $\theta_{1}$ | $\theta_{2}$ | $\theta_{3}$ | $\theta_{4}$ | $\theta_{5}$ | $\theta_{6}$ | $\theta_{7}$ | $\theta_{8}$ | $\theta_{9}$ | $\theta_{10}$ | $\theta_{11}$ | $\theta_{12}$ | $\theta_{13}$ | $\theta_{14}$ | $\theta_{15}$ | $\theta_{16}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .2222 | .80 | .80 | .80 | .80 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 |
| .2220 | .80 | .80 | .80 | .80 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 |
| .1944 | .20 | .20 | .20 | .20 | .80 | .80 | .80 | .80 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 |
| .1943 | .20 | .20 | .20 | .20 | .80 | .80 | .80 | .80 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 |
| .1666 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .80 | .80 | .80 | .80 | .20 | .20 | .20 | .20 |
| .1666 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .80 | .80 | .80 | .80 | .20 | .20 | .20 | .20 |
| .1388 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .80 | .80 | .80 | .80 |
| .1388 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .20 | .80 | .80 | .80 | .80 |
| .1111 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 |
| .1109 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 |
| .0833 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 |
| .0832 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 |
| .0555 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 |
| .0555 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 |
| .0277 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 |
| .0277 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 | .20 | .20 | .20 | .80 |
| .008 | .44 | .39 | .37 | .35 | .39 | .34 | .32 | .31 | .37 | .32 | .30 | .29 | .35 | .31 | .29 | .28 |

Remark. EM algorithm has been stopped after adding 9-th component. The weight $w_{9}$ of the last added component is by two orders less than $w_{8}$.

## Concluding Remarks

Conditional Independence Model as a Tool of Cluster Analysis

- goal: identification of unknown mixture parameters
- applicable to multivariate categorical data
- drawback: discrete product mixtures are non-identifiable
- unique solution: additional constraints (sequential adding of components)

Application of Conditional Independence Model for Approximation

- goal: approximation of unknown probability distribution
- statistical pattern recognition
- statistical modelling of large databases
- texture modelling and evaluation
- non-identifiability is useful (increased flexibility)


## Literatura 1/2

(1) Carreira-Perpignan M.A., Renals S. (2000): Practical identifiability of finite mixtures of multivariate Bernoulli distributions.
Neural Computation, Vol. 12, pp. 141-152
Rempster A.P., Laird N.M. and Rubin D.B. (1977): Maximum likelihood from incomplete data via the EM algorithm.
J. Roy. Statist. Soc., B, Vol. 39, pp. 1-38

目 Grim J. (1982): On numerical evaluation of maximum - likelihood estimates for finite mixtures of distributions.
Kybernetika, Vol.18, No.3, pp. 173-190
(Ryllenberg M., Koski T., Reilink E., Verlaan M. (1994): Non-uniqueness in probabilistic numerical identification of bacteria. Journal of Applied Probability, Vol. 31, pp. 542-548
围 Lazarsfeld P.F., Henry N. (1968): Latent structure analysis. Houghton Mifflin: Boston

## Literatura 2／2

（ McLachlan G．J．and Peel D．（2000）：Finite Mixture Models， John Wiley \＆Sons，New York，Toronto： 2000

囯 Schlesinger，M．I．（1968）：Relation between learning and self－learning in pattern recognition．＂（in Russian），
Kibernetika，（Kiev），No．2，pp．81－88
國 Teicher，H．（1968）：Identifiability of mixtures of product measures．
Ann．Math．Statist．，Vol．39，pp．1300－1302
R Titterington，D．M．，Smith，A．F．M．，\＆Makov，U．E．（1985）：
Statistical analysis of finite mixture distributions． John Wiley \＆Sons，New York： 1985

國 Vermunt J．K．，Magidson J．（2002）：Latent Class Cluster Analysis．In： Advances in Latent Class Analysis， （Eds．Hagenaars J．A．et al．），Cambridge University Press

