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Jǐŕı Grim

Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic, Prague

Department of Pattern Recognition
http://www.utia.cas.cz/RO

Conference S+SSPR 2006, Hong Kong 2006



Outline

Outline

1 Conditional Independence Models
Product Mixture: Conditional Independence Model
EM Algorithm For Discrete Product Mixtures
Application to Cluster Analysis

2 Problem of Identifiability
Definition of Identifiability
Proof of Non-Identifiability of Discrete Product Mixtures
Unique Solution by Additional Constraints

3 Example: Mixture of Multivariate Bernoulli Distributions
Re-Identification of Multivariate Bernoulli Mixture
Comparison of the Original and Re-Estimated Parameters

4 Concluding Remarks



Model Identifiability Example Conclusion Model EM Algorithm Clustering

Product Mixture: Conditional Independence Model

discrete random variables: ξn ∈ Xn, n ∈ N , N = {1, . . . ,N}
Xn : finite sets of categorical values (no ordering)

random vector: ξ = (ξ1, . . . , ξN) ∈ X , X = X1 × · · · × XN

discrete random (latent) variable: µ ∈M, M = {1, . . . ,M}

P{µ = m} = wm, m ∈M,
∑

m∈M
wm = 1

ASSUMPTION: variables ξn are conditionally independent given µ

P{ξ = x | µ = m} = F (x|m) =
∏
n∈N

fn(xn|m)

model of conditional independence (product mixture):

P(x) =
∑

m∈M
wmF (x|m) =

∑
m∈M

wm

∏
n∈N

fn(xn|m)
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EM Algorithm For Discrete Product Mixtures

independent observations of the random vector ξ:

S = {x(1), x(2), . . . , x(J)}, x(j) ∈ X
log-likelihood function:

L =
1

|S|
∑
x∈S

log

(∑
m∈M

wm

∏
n∈N

fn(xn|m)

)
→ max

EM iteration equations: (m ∈M, x ∈ S)

q(m|x) =
wm

∏
n∈N fn(xn|m)∑

j∈M wj

∏
n∈N fn(xn|j)

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

f
′

n (ξ|m) =
1∑

x∈S q(m|x)
∑
x∈S

δ(ξ, xn)q(m|x), ξ ∈ Xn

MONOTONIC PROPERTY: L(t+1) − L(t) ≥ 0, t = 0, 1, 2, . . .
⇒ convergence to local/global maximum of the log-likelihood function
⇒ starting-point dependent estimates
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Application of Product Mixtures to Cluster Analysis

CATEGORICAL DATA: the discrete space X has no structure in itself,
conditional independence assumption is the only source of information
about possible clusters (“latent classes”):

P(x) =
∑

m∈M
wmF (x|m) =

∑
m∈M

wm

∏
n∈N

fn(xn|m)

the values of “latent variable” m ∈M correspond to“hidden causes”
(remove statistical dependences between ξ1, . . . , ξN )

q(m|x) =
wmF (x|m)∑
j∈M wjF (x|j)

, d(x) = arg max
m∈M

{q(m|x)}

q(m|x): membership function of the m-th cluster

< = {S1,S2, . . . ,SM}, Sm = {x ∈ S : d(x) = m}, S = ∪m∈MSm,

Remark. Clusters Sm are defined by the mixture components wmF (x|m).
If the mixture P(x) is not defined uniquely, then the result of cluster
analysis becomes questionable.
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Discrete Product Mixtures Are Non-Identifiable

Definition of Identifiability

A class of distribution mixtures F is identifiable if the equality of
any two mixtures P,P

′
from F

P(x) =
∑

m∈M
wmF (x|m) =

∑
m∈M′

w
′

mF
′
(x|m) = P

′
(x), ∀ x ∈ X

implies that the parameters of the two mixtures P,P
′
are identical,

except for order of components.

Lemma

Any discrete distribution mixture

P(x) =
∑

m∈M
wmF (x|m), F (x|m) =

∏
n∈N

fn(xn|m)

can be equivalently described by infinitely many different parameter sets
if at least one of the univariate conditional distributions fn(xn|m) is
non-degenerate in the sense that fn(xn|m) < 1, for all xn ∈ Xn.
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Discrete Product Mixtures Are Non-Identifiable

Proof. If fn(xn|m) is a non-degenerate distribution then we can write

fn(·|m) = αf (α)
n (·|m) + βf (β)

n (·|m), f (α)
n (·|m) 6= f (β)

n (·|m)

where 0 < α < 1, β = 1− α. By substitution we obtain

wmF (x|m) = w (α)
m F (α)(x|m) + w (β)

m F (β)(x|m), x ∈ X

where F (α)(x|m), F (β)(x|m) are different components:

w (α)
m = αwm, F (α)(x|m) = f (α)

n (xn|m)
∏

i∈N ,i 6=n

fi (xi |m),

w (β)
m = βwm, F (β)(x|m) = f (β)

n (xn|m)
∏

i∈N ,i 6=n

fi (xi |m)

⇒ The original mixture is described equivalently by non-trivially
different parameters.
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Unique Mixture Parameters by Additional Constraints

EM Algorithm & Sequential Adding of Components

starting with one component: M = 1, uniform distributions fn(xn|1)

adding new component after sufficient convergence (L
′
−L
L < ε):

M → M + 1, uniform distributions fn(xn|M + 1), wM+1 = 0.5

repeat adding of components until the new weight is “suppressed”

Properties:

⊕ the method avoids random influences of initial values

⊕ the resulting mixture is defined (almost) uniquely

⊕ newly added component fits to currently “outlying” data

⊕ reasonable choice of a proper number of components

	 the method is based on heuristical idea, no theoretical arguments

	 adding new components disturbs preceding convergence phase
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Artificial Problem: Re-Identification of Bernoulli Mixture

mixture of multivariate Bernoulli distributions

P∗(x) =
∑

m∈M
wm

∏
n∈N

θxn
nm(1− θnm)1−xn , x ∈ {0, 1}N , 0 < θnm < 1

SOLUTION: re-estimation of parameters wm, θnm by using
weighted modification of EM algorithm:

L∗ = lim
|S|→∞

1

|S|
∑
x∈S

log

[ ∑
m∈M

wmF (x|m)

]
=
∑
x∈X

P∗(x) log

[ ∑
m∈M

wmF (x|m)

]

modified EM iteration equations: (m ∈M, x ∈ X )

q(m|x) =
wmF (x|m)∑
j∈M wjF (x|j)

, w
′

m =
∑
x∈X

P∗(x)q(m|x)

θ
′

nm =
1∑

x∈X P∗(x)q(m|x)
∑
x∈X

xnP
∗(x)q(m|x), ξ ∈ Xn

Remark. Computation is equivalent to infinite data set S
(avoids random small-sample fluctuations).
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Comparison of the Original and Re-Estimated Parameters

original parameters: M = 8,N = 16, Carreira-Perpignan et.al. (2000)
(the weights P∗(x) computed for all the 65536 binary vectors x ∈ X )

comparison of original and re-estimated parameters (upper×lower row):

wm θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 θ13 θ14 θ15 θ16

.2222̇ .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20

.2220 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20

.1944̇ .20 .20 .20 .20 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20

.1943 .20 .20 .20 .20 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20

.1666̇ .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .20 .20 .20 .20

.1666 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .20 .20 .20 .20

.1388̇ .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80

.1388 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80

.1111̇ .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20

.1109 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20

.0833̇ .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20

.0832 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20

.0555̇ .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20

.0555 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20

.0277̇ .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80

.0277 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80 .20 .20 .20 .80

.0008 .44 .39 .37 .35 .39 .34 .32 .31 .37 .32 .30 .29 .35 .31 .29 .28

Remark. EM algorithm has been stopped after adding 9-th component.
The weight w9 of the last added component is by two orders less than w8.
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Concluding Remarks

Conditional Independence Model as a Tool of Cluster Analysis

goal: identification of unknown mixture parameters

applicable to multivariate categorical data

drawback: discrete product mixtures are non-identifiable

unique solution: additional constraints
(sequential adding of components)

Application of Conditional Independence Model for Approximation

goal: approximation of unknown probability distribution

statistical pattern recognition

statistical modelling of large databases

texture modelling and evaluation

non-identifiability is useful (increased flexibility)



Model Identifiability Example Conclusion

Literatura 1/2

Carreira-Perpignan M.A., Renals S. (2000): Practical identifiability of
finite mixtures of multivariate Bernoulli distributions.
Neural Computation, Vol. 12, pp. 141-152

Dempster A.P., Laird N.M. and Rubin D.B. (1977): Maximum
likelihood from incomplete data via the EM algorithm.
J. Roy. Statist. Soc., B, Vol. 39, pp. 1-38

Grim J. (1982): On numerical evaluation of maximum - likelihood
estimates for finite mixtures of distributions.
Kybernetika, Vol.18, No.3, pp. 173-190

Gyllenberg M., Koski T., Reilink E., Verlaan M. (1994):
Non-uniqueness in probabilistic numerical identification of bacteria.
Journal of Applied Probability, Vol. 31, pp. 542-548

Lazarsfeld P.F., Henry N. (1968): Latent structure analysis.
Houghton Mifflin: Boston



Model Identifiability Example Conclusion

Literatura 2/2

McLachlan G.J. and Peel D. (2000): Finite Mixture Models,
John Wiley & Sons, New York, Toronto: 2000

Schlesinger, M.I. (1968): Relation between learning and self-learning
in pattern recognition.” (in Russian),
Kibernetika, (Kiev), No. 2, pp. 81-88

Teicher, H. (1968): Identifiability of mixtures of product measures.
Ann. Math. Statist., Vol. 39, pp. 1300-1302

Titterington, D.M., Smith, A.F.M., & Makov, U.E. (1985):
Statistical analysis of finite mixture distributions.
John Wiley & Sons, New York: 1985

Vermunt J.K., Magidson J. (2002): Latent Class Cluster Analysis. In:
Advances in Latent Class Analysis,
(Eds. Hagenaars J.A. et al.), Cambridge University Press


	Outline
	Conditional Independence Models
	Model
	EM Algorithm
	Clustering

	Problem of Identifiability
	Definition
	Proof
	Constraints

	Example: Mixture of Multivariate Bernoulli Distributions
	Artificial Problem
	Comparison of parameters

	Concluding Remarks

