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Introduction

Synthesis / Reconstruction / Repair of Image Contents

Goal: synthesise missing image data that resemble reality well:

e available training data is analyzed and a model is devised

o missing data is (re)constructed from the most "alike” part
of the original image

e many approaches known,
but only a few can deal with textures well

o local statistical model can be used to capture and
replicate texture properties
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Texture Modeling by Local Statistical Models

i J

H 3
RGB image: Z = [Zij]i:O j=0" zZj = (Z,'J'17Z,'j272,'j3) ER

Statistical "homogeneity” assumption:

Texture can be described locally based on statistical properties of pixels
inside a properly sized shifting window.

X(iaj):x:(XhXZu"'vXN)6‘)(3 X:RN

~ pixels inside the shifting window (usually N = 20 -+ 900)
Remark: vectors x € S are not independent due to window overlaps
stemming from shifting. UTiA
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Texture Modeling by Normal Mixtures

Principle of Modeling (Grim et al. 2001, Haindl et al., 2004):

@ estimation of local statistical properties of the texture within a
shifting window using normal product mixtures P(x)

e pixelwise prediction (synthesis) of texture (of arbitrary size) based on
conditional densities derived from P(x) based on known window part

o (optional) replacement of the predicted pixel in each step by the
"most similar” piece of original image

Subvector of known
pixel variables in window:

c
Xe = (Xnys Xngs - - » Xmy) € Xe = RIC!

C={ny,n....,n} CN

UNKNOWN
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Local Statistical Model: Normal Product Mixture

Data: S={xM, ... xF}, xNecx (K=|S|)
~ data obtained by shifting a window over image

Approximate by Gaussian mixture:

P(x)= > WnF(Xltty om), x€X (1)
meM
F(X|“m7 o'm) = H fn(Xn|Umna Umn) (2)
neN
1 Xn — Umn 2
fn(Xn‘,U/mmUmn) = \/%70_ exp {_(20_2)} . (3)

Component indexes: M ={1,2,..., M}
Variable indexes: N = {1,2,... N}
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Local Statistical Model: Normal Product Mixture

Mixture parameters optimized to maximize log-likelihood:

|8| Z log P(x |S| Z log [ Z Win F (X| o, 0] (4)

XES XES meM

using the well-known EM algorithm:
E-step: (meM,neN,xeS)

(m| ): WmF(X“l’m?a-m)

, meM 5
ZJEM WJF(X\MJ',UJ) ®)

’

Hin = xnq(mlx), ()
ZXES q(m|x Z

ZX q(mlx) (8)

o 2 = (4 )2
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Local Texture Prediction by Normal Mixture

Estimate the remaining missing pixel values x,,n € (A \ C) using:

c\Xn, Xc
Pn\C(Xn|xC) n (n ) Z W XC Xn|an70mn) (9)

PC XC meM
where
W, (XC) _ WmF(xC“l'mao-m) (10)
> jem WiF (xclpj, o))
F(XC|,LLm70m) = H fn(Xn|/Lmnaamn)7 xc € &¢ (11)

neC

by computing the conditional expectation:

EQnt = [ xopictalsc)dn = 3 Walscum,  (12)
meM

Remark: missing pixels can be substituted by component means of a
single component selected randomly with respect to component weights
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Texture Prediction Synthesis Examples

Model Estimation

Local Statistical Model
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”Ratan” texture synthesis — example of replacement of predicted

pixels by the most similar piece of original image:

synthesis using
patches

optimal patches

original texture

kA A
LTS

patch utilization: component means p,, substituted by most similar

pieces (patches) p? of the original image. Patches selected optimally so

that:
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Local Statistical Model Synthesis Examples

Example 2: Texture Modeling by Normal Mixture

" Coarse linen” texture synthesis:

component means means substituted

SR based synthesis by patches

shifting window size: 30 x 30 pixels

mixture dimensionality: N = 30 x 30 = 900, components: |M| = 128
no. of samples obtained by shifting the window: |S| = 232000

EM algorithm iterations: t = 15

window shift during synthesis: 13 pixels



Image Inpainting Inpainting Procedure Examples

Inpainting Procedure

e location of damaged parts in input image assumed to be
known

e local statistical model estimated from the available
(undamaged) data, up to a specified distance from the
damaged parts

e damaged parts replaced iteratively; in each iteration only
those pixels with undamaged (or synthesised in last
iteration) neighbors are substituted

e substitution made so that the new pixel "fits best” in the
known neighbourhood

Parameters:
@ window size
@ window shift distance
@ no. of components
@ pixel substitution mechanism — component means vs. patches (UTiA]
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Local Image Prediction — Sample Image 1: Damaged
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Local Image Prediction — Sample Image 1: Inpainted
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Local Image Prediction — Sample Image 1: Components
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Image Inpainting Inpainting Procedure Examples

Local Image Prediction — Sample Image 2: Damaged
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Image Inpainting  Inpainting Procedure Examples
Local Image Prediction — Sample Image 2: Inpainted
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Image Inpainting Inpainting Procedure Examples

Local Image Prediction — ZOOMED Image 2: Damaged
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Local Image Prediction — ZOOMED Image 2: Inpainted
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Local Image Prediction — Sample Image 2: Components
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Local Image Prediction — Sample Image 3: Damaged
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Local Image Prediction — Sample Image 3: Inpainted
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Local Image Prediction — Sample Image 3: Components
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