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Medical Diagnostic System

Goal: platform to accumulate decision-making know-how

xn ∈ X n: discrete variables, n ∈ N , N = {1, . . . ,N}
X n : finite sets of values (X = X 1 ×X 2 × · · · × XN)

symptom variables (questions): x̄ = (x1, . . . , xK ) ∈ X̄
diagnostic variables (diagnoses): yj = xK+j , j ∈ J , J = {1, . . . , J}

x = (x1, x2, . . . , xN) ∈ X , y = (y1, y2, . . . , yJ) ∈ Y, N = K + J, (N ≈ 103)

Statistical model: mixture of product components (restrictive ?)

P(x) =
∑
m∈M

wmF (x |m), F (x |m) =
∏
n∈N

fn(xn|m), M = {1, . . . ,M}

fn(xn|m), n ∈ N : univariate discrete distributions
∑

xn∈X n
fn(xn|m) = 1

Properties of product mixtures:

simple evaluation of (conditional) marginals

estimation from incomplete data vectors by EM algorithm

“dimensionless” applicability (structural model)
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Product Mixture Model as a Knowledge Base of PES

Estimated knowledge base: P(x) =
∑

m∈M wmF (x |m), x ∈ X

INFERENCE MECHANISM: (Pj(yj) = PK+j(xK+j), j ∈ J )

definite input: xC = (xi1 , . . . , xik ), C = {i1, . . . , ik} ⊂ {1, 2, . . . ,K}
response: conditional distribution Pj|C (yj |xC ) given xC ∈ X C

Pj|C (yj |xC ) =
PjC (yj , xC )

PC (xC )
=
∑
m∈M

Wm(xC )fj(yj |m)

PjC (yj , xC ) =
∑
m∈M

wmfj(yj |m)FC (xC |m), FC (xC |m) =
∏
i∈C

fi (xi |m)

Wm(xC ) =
wmFC (xC |m)∑
k∈M wkFC (xC |k)

, xC ∈ X C , m ∈M

uncertain input: P∗C (xC ), xC ∈ X C , W ∗m =
∑

xC∈X C
Wm(xC )P∗C (xC )

response:

P∗n (yj) =
∑

xC∈X C

Pj|C (yj |xC )P∗C (xC ) =
∑
m∈M

W ∗m fj(yj |m)
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Ordered List of Relevant Diagnostic Variables

Ordering of diagnostic variables given the symptoms xC

set of symptoms xC = (xi1 , . . . , xik ) ∈ X C , C = {i1, . . . , ik}

CRITERION: difference between the a priori distribution Pj(yj), j ∈ J
and the conditional distribution Pj|C (yj |xC )

Kullback-Leibler information divergence:

I (Pj(·)||Pj|C (·|xC )) =
∑
yj∈Y j

Pj(yj) log
Pj(yj)

Pj|C (yj |xC )
, j ∈ J

decrease of conditional entropy:

4H =
H(Y j)− HxC

(Y j)

H(Y j)
, j ∈ J

absolute difference: 4P =
∑

yj∈Y j
|Pj(yj)− Pj|C (yj |xC )|

REMARK: Medical aspects may be more important for the choice of yj .
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Optimal Sequential Decision-Making

Optimal choice of informative questions

given a set of symptoms xC = (xi1 , . . . , xik ) ∈ X C and a diagnose yj
⇒ the most informative question xi , (i /∈ C) with respect to yj

CRITERION: maximum conditional Shannon information given xC :

IxC
(X i ,Y j) = HxC

(Y j)− HxC
(Y j |X i ), i∗ = arg max

i /∈C
{IxC

(X i ,Y j)}

HxC
(Y j) =

∑
yj∈Y j

−P(yj |xC ) logP(yj |xC ), p(yj |xC ) = P(yj , xC )/P(xC )

HxC
(Y j |X i ) =

∑
xi∈X i

p(xi |xC )
∑
yj∈Y j

−P(yj |xC , xi ) logP(yj |xC , xi )

P(yj |xC , xi ) = P(yj |xC , xi )/P(xC , xi ), i /∈ C, yj ∈ Y j

REMARK: A unique possibility to compute conditional Shannon information.
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Example: Optimal Sequential Recognition of Numerals

First row: What the classifier expects given some raster fields
Second row: Conditional informativity of the raster fields.
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Example: Optimal Sequential Recognition of Numerals
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Controlled Dialog Scheme

Input information and inference mechanism

choice of input questions and specification of symptoms: xC ∈ X C

⇒ conditional distributions of diagnostic variables: Pj|C (yj |xC ), j ∈ J

Evaluation of diagnostic variables

ordered list of relevant diagnostic variables yj , j ∈ J given xC

⇒ choice of the most relevant diagnostic variable yj

Choice of the most informative question with respect to diagnose yj

conditional informativity IxC
(xi , yj) of questions xi , i /∈ C

⇒ ordered list of informative questions xi given yj and xC ∈ X C

Knowledge base update

inclusion of new data vectors and re-estimation of the mixture model

dialog scheme produces incomplete (sparse) data vectors
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EM Algorithm for Discrete Product Mixtures

independent identically distributed observations:

S = {x (1), x (2), . . . , x (I )}, x
(i) ∈ X

log-likelihood function:

L =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF (x |m)] =
1

|S|
∑
x∈S

log

(∑
m∈M

wm

∏
n∈N

fn(xn|m)

)

EM iteration equations: (m ∈M, x ∈ S)

q(m|x) =
wmF (x |m)∑
j∈M wjF (x |j)

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

f
′

n (ξ|m) =
1∑

x∈S q(m|x)

∑
x∈S

δ(ξ, xn)q(m|x), ξ ∈ X n, n ∈ N

MONOTONIC PROPERTY: L(t+1) − L(t) ≥ 0, t = 0, 1, 2, . . .

REMARK: Risk of multiple latent underflow in evaluation of q(m|x) !
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Structural Mixture Model

structural variables: φmn ∈ {0, 1}, m ∈M, n ∈ N

φmn = 0⇒ distribution fn(xn|m) is replaced by fixed “background” fn(xn|0)

F (x |m) =
∏
n∈N

fn(xn|m)φmn fn(xn|0)1−φmn , m ∈M, (fn(xn|0) = Pn(xn))

P(x) =
∑
m∈M

F (x |m)f (m) = F (x |0)
∑
m∈M

wmG (x |m,φm)

F (x |0) =
∏
n∈N

fn(xn|0), G (x |m,φm) =
∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

“background distribution” F (x |0) cancels in the conditional weights:

Wm(xC ) =
wmGC (xC |m,φm)∑M
j=1 wjGC (xC |j ,φj)

, GC (xC |m,φm) =
∏
i∈C

[
fi (xi |m)

fi (xi |0)

]φmi

Consequence: structural mixture can be treated as dimensionless
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Structural Modification of EM Algorithm

structural variables can be optimized in full generality:

L =
1

|S|
∑
x∈S

log
[
F (x |0)

∑
m∈M

wmG (x |m,φm)
]
, F (x |0) =

∏
n∈N

fn(xn|0)

EM Algorithm: (F (x |0) cancels in the conditional weights q(m|x) )

q(m|x) =
G (x |m,φm)wm∑
j∈M G (x |j ,φj)wj

, w
′

m =
1

|S|
∑
x∈S

q(m|x), m ∈M, x ∈ S

f
′

n (ξ|m) =
1∑

x∈S q(m|x)

∑
x∈S

δ(ξ, xn)q(m|x), n ∈ N

structural criterion: Kullback-Leibler information divergence

γ
′

mn =
∑
x∈S

q(m|x)

|S|
log
[ f ′

n (xn|m)

fn(xn|0)

]
= w

′

m

∑
xn∈Xn

f
′

n (xn|m) log
f

′

n (xn|m)

fn(xn|0)

optimization: φ
′

mn = 1 for a fixed number of the highest values γ
′

mn
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Modification of EM Algorithm for Incomplete Data

“sparse” data vectors, e.g. x̄ = (x1,−, x3, x4,−,−, x7, . . . , xN), xn ∈ X n

N (x̄) = {n ∈ N : for which variable xn is defined in x̄}, x̄ ∈ S
Sn = {x̄ ∈ S : n ∈ N (x̄)}, ≈ vectors x̄ ∈ S with defined variable xn

m.-l. estimation from incomplete data:

L =
1

|S|
∑
x̄∈S

log[
M∑

m=1

wmF (x̄ |m)], F (x̄ |m) =
∏

n∈N (x̄ )

fn(xn|m)

iteration equations: (m ∈M, n ∈ N , x̄ ∈ S)

q(m|x̄) =
wmF (x̄ |m)∑M
j=1 wjF (x̄ |j)

, w
′

m =
1

|S|
∑
x̄∈S

q(m|x̄)

f
′

n (ξ|m) =
1∑

x̄∈Sn q(m|x̄)

∑
x̄∈Sn

δ(ξ, xn)q(m|x̄), ξ ∈ X n

Remark: Only available data are used without estimating missing values
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Modification of EM Algorithm for Weighted Data

NOTATION: γ(x) : relative frequency of x in S

x /∈ S ⇒ γ(x) = 0, ⇒
∑
x∈X

γ(x) =
1

|S|
∑
x∈S

1 = 1

⇒ equivalent expression:

L =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF (x |m)] =
∑
x∈X

γ(x) log[
∑
m∈M

wmF (x |m)]

⇒ weighted iteration equations: (m ∈M, n ∈ N , x ∈ X )

q(m|x) =
wmF (x |m)∑
j∈M wjF (x |j)

, w
′

m =
∑
x∈X

γ(x)q(m|x),

f
′

n (ξ|m) =
∑
x∈X

δ(ξ, xn)γ(x)
q(m|x)

w ′
m

, ξ ∈ X n, m ∈M

Application: relevance of data in EM algorithm
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Self-correcting Mechanisms

Self-correcting Mechanisms for Data

unreliable, suspect or incorrect data can be removed or suppressed by
weighting, e.g γ(x) = logP(x)/L̄, L̄ = 1

|S|
∑

x∈S logP(x)

sparsely used variable xn can be removed, e.g. if
∑

m∈M φmn is small

a new variable xn can be included at any level of design process
by specifying the corresponding background distribution fn(xn|0)

Self-correcting Mechanisms for Knowledge Base

initial parameters: expert design of elementary diagnoses (components)

intuitively designed components will be modified by EM algorithm

components having small “support” in the data can be identified
by small weights wm and removed

a new component can be included at any level of design process
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Concluding Remarks

Final output for a user:

printed recommendation for a physician including input symptoms, relevant
diagnoses, suggested medication and comments

Concluding Remarks and Comments

administration background (admin.): support of medical experts

hierarchical lists of diagnoses and questions (admin.)

sequential inclusion of new questions (open access and admin.)

sequential inclusion of new components (open access and admin.)

sequential inclusion of diagnostic areas (admin.)

supervised accumulation of initial data (physicians, students)

detailed comments to diagnoses (open access and admin.)

supervised self-correcting mechanisms (admin.)

suggested medication and treatment (admin.) ⇒ financial support
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