Feasibility Study of an Interactive Medical Diagnostic Wikipedia

Outline

Jiří Grim

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic, Prague Department of Pattern Recognition http://www.utia.cas.cz/RO

SPMS 2016, June 20-24, 2016, Dobřichovice, Czech Republic

Outline

Outline

- Problem of Medical Decision-Making
 - Medical Diagnostic System
- Probabilistic Expert System PES
 - Product Mixture Model as a Knowledge Base of PES
 - Ordering of Relevant Diagnostic Variables
 - Optimal Sequential Decision-Making
 - Controlled Dialog Scheme
- Stimation of Diagnostic Knowledge Base
 - EM Algorithm for Discrete Product Mixtures
 - Structural Mixture Model
 - EM Algorithm for Incomplete Data
 - EM Algorithm for Weighted Data
- 4 Knowledge Base Update
 - Self-correcting Mechanisms Based on EM Algorithm

Diagnostics

Medical Diagnostic System

Goal: platform to accumulate decision-making know-how

 $\begin{array}{ll} \textbf{x}_n \in \mathcal{X}_n \text{: discrete variables, } n \in \mathcal{N}, & \mathcal{N} = \{1, \ldots, N\} \\ \mathcal{X}_n \text{: finite sets of values } & (\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_N) \end{array}$

symptom variables (questions): $\bar{x} = (x_1, \dots, x_K) \in \bar{\mathcal{X}}$ diagnostic variables (diagnoses): $y_j = x_{K+j}, j \in \mathcal{J}, \mathcal{J} = \{1, \dots, J\}$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_N) \in \mathcal{X}, \ \boldsymbol{y} = (y_1, y_2, \dots, y_J) \in \mathcal{Y}, \ N = K + J, \ (N \approx 10^3)$$

Statistical model: mixture of product components (restrictive ?)

$$P(\mathbf{x}) = \sum_{m \in \mathcal{M}} w_m F(\mathbf{x}|m), \quad F(\mathbf{x}|m) = \prod_{n \in \mathcal{N}} f_n(x_n|m), \quad \mathcal{M} = \{1, \dots, M\}$$

 $f_n(x_n|m), n \in \mathcal{N}$: univariate discrete distributions \sum

$$\sum_{x_n\in\mathcal{X}_n}f_n(x_n|m)=1$$

Properties of product mixtures:

- simple evaluation of (conditional) marginals
- estimation from incomplete data vectors by EM algorithm
- "dimensionless" applicability (structural model)

Product Mixture Model as a Knowledge Base of PES

Estimated knowledge base: $P(\mathbf{x}) = \sum_{m \in \mathcal{M}} w_m F(\mathbf{x}|m), \quad \mathbf{x} \in \mathcal{X}$ INFERENCE MECHANISM: $(P_j(y_j) = P_{K+j}(x_{K+j}), j \in \mathcal{J})$ definite input: $\mathbf{x}_C = (x_{i_1}, \dots, x_{i_k}), \quad C = \{i_1, \dots, i_k\} \subset \{1, 2, \dots, K\}$ response: conditional distribution $P_{j|C}(y_j|\mathbf{x}_C)$ given $\mathbf{x}_C \in \mathcal{X}_C$

$$P_{j|C}(y_j|\mathbf{x}_C) = \frac{P_{jC}(y_j,\mathbf{x}_C)}{P_C(\mathbf{x}_C)} = \sum_{m \in \mathcal{M}} W_m(\mathbf{x}_C) f_j(y_j|m)$$
$$P_{jC}(y_j,\mathbf{x}_C) = \sum_{m \in \mathcal{M}} w_m f_j(y_j|m) F_C(\mathbf{x}_C|m), \quad F_C(\mathbf{x}_C|m) = \prod_{i \in \mathcal{C}} f_i(x_i|m)$$

$$W_m(\mathbf{x}_C) = \frac{w_m F_C(\mathbf{x}_C|m)}{\sum_{k \in \mathcal{M}} w_k F_C(\mathbf{x}_C|k)}, \quad \mathbf{x}_C \in \mathcal{X}_C, \ m \in \mathcal{M}$$

uncertain input: $P_C^*(\mathbf{x}_C), \mathbf{x}_C \in \mathcal{X}_C, \quad W_m^* = \sum_{\mathbf{x}_C \in \mathcal{X}_C} W_m(\mathbf{x}_C) P_C^*(\mathbf{x}_C)$

response:

$$P_n^*(y_j) = \sum_{\boldsymbol{x}_C \in \mathcal{X}_C} P_{j|C}(y_j|\boldsymbol{x}_C) P_C^*(\boldsymbol{x}_C) = \sum_{m \in \mathcal{M}} W_m^* f_j(y_j|m)$$

Ordered List of Relevant Diagnostic Variables

Ordering of diagnostic variables given the symptoms x_C

set of symptoms
$$\mathbf{x}_{C} = (x_{i_1}, \dots, x_{i_k}) \in \mathcal{X}_{C}, \ C = \{i_1, \dots, i_k\}$$

CRITERION: difference between the a priori distribution $P_j(y_j), j \in \mathcal{J}$ and the conditional distribution $P_{j|C}(y_j|\mathbf{x}_C)$

Kullback-Leibler information divergence:

$$I(P_j(\cdot)||P_{j|\mathcal{C}}(\cdot|m{x}_{\mathcal{C}})) = \sum_{y_j\in\mathcal{Y}_j} P_j(y_j)\lograc{P_j(y_j)}{P_{j|\mathcal{C}}(y_j|m{x}_{\mathcal{C}})}, \ j\in\mathcal{J}$$

decrease of conditional entropy:

$$\triangle H = \frac{H(\mathcal{Y}_j) - H_{\mathbf{x}_c}(\mathcal{Y}_j)}{H(\mathcal{Y}_j)}, \ j \in \mathcal{J}$$

absolute difference: $\triangle P = \sum_{y_j \in \mathcal{Y}_j} |P_j(y_j) - P_{j|C}(y_j|\mathbf{x}_C)|$

REMARK: Medical aspects may be more important for the choice of y_j .

Optimal Sequential Decision-Making

Optimal choice of informative questions

given a set of symptoms $\mathbf{x}_C = (x_{i_1}, \dots, x_{i_k}) \in \mathcal{X}_C$ and a diagnose y_j \Rightarrow the most informative question x_i , $(i \notin C)$ with respect to y_j

CRITERION: maximum conditional Shannon information given x_C :

$$H_{\mathbf{X}_{c}}(\mathcal{X}_{i},\mathcal{Y}_{j}) = H_{\mathbf{X}_{c}}(\mathcal{Y}_{j}) - H_{\mathbf{X}_{c}}(\mathcal{Y}_{j}|\mathcal{X}_{i}), \quad i^{*} = \arg \max_{i \notin C} \{I_{\mathbf{X}_{c}}(\mathcal{X}_{i},\mathcal{Y}_{j})\}$$

$$H_{\mathbf{x}_{C}}(\mathcal{Y}_{j}) = \sum_{y_{j} \in \mathcal{Y}_{j}} -P(y_{j}|\mathbf{x}_{C}) \log P(y_{j}|\mathbf{x}_{C}), \quad p(y_{j}|\mathbf{x}_{C}) = P(y_{j},\mathbf{x}_{C})/P(\mathbf{x}_{C})$$
$$H_{\mathbf{x}_{C}}(\mathcal{Y}_{j}|\mathcal{X}_{i}) = \sum_{x_{i} \in \mathcal{X}_{i}} p(x_{i}|\mathbf{x}_{C}) \sum_{y_{j} \in \mathcal{Y}_{j}} -P(y_{j}|\mathbf{x}_{C},x_{i}) \log P(y_{j}|\mathbf{x}_{C},x_{i})$$
$$P(y_{j}|\mathbf{x}_{C},x_{i}) = P(y_{j}|\mathbf{x}_{C},x_{i})/P(\mathbf{x}_{C},x_{i}), \quad i \notin C, \quad y_{j} \in \mathcal{Y}_{j}$$

REMARK: A unique possibility to compute conditional Shannon information.

Example: Optimal Sequential Recognition of Numerals

First row: What the classifier expects given some raster fields **Second row:** Conditional informativity of the raster fields.

Example: Optimal Sequential Recognition of Numerals

First row: What the classifier expects given some raster fields Second row: Conditional informativity of the raster fields

Controlled Dialog Scheme

Input information and inference mechanism

- choice of input questions and specification of symptoms: $x_C \in \mathcal{X}_C$
- \Rightarrow conditional distributions of diagnostic variables: $P_{j|C}(y_j|\mathbf{x}_C), j \in \mathcal{J}$

Evaluation of diagnostic variables

- ordered list of relevant diagnostic variables $y_j, j \in \mathcal{J}$ given \boldsymbol{x}_C
- \Rightarrow choice of the most relevant diagnostic variable y_i

Choice of the most informative question with respect to diagnose y_i

- conditional informativity $I_{\boldsymbol{X}_{C}}(x_{i}, y_{j})$ of questions $x_{i}, i \notin C$
- \Rightarrow ordered list of informative questions x_i given y_j and $\mathbf{x}_C \in \mathcal{X}_C$

Knowledge base update

- inclusion of new data vectors and re-estimation of the mixture model
- dialog scheme produces incomplete (sparse) data vectors

EM Algorithm for Discrete Product Mixtures

independent identically distributed observations:

$$\mathcal{S} = \{ \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(l)} \}, \quad \boldsymbol{x}^{(i)} \in \mathcal{X}$$

log-likelihood function:

$$L = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} \log[\sum_{m \in \mathcal{M}} w_m F(\mathbf{x}|m)] = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} \log\left(\sum_{m \in \mathcal{M}} w_m \prod_{n \in \mathcal{N}} f_n(x_n|m)\right)$$

EM iteration equations: $(m \in \mathcal{M}, x \in \mathcal{S})$

$$q(m|\mathbf{x}) = \frac{w_m F(\mathbf{x}|m)}{\sum_{j \in \mathcal{M}} w_j F(\mathbf{x}|j)}, \quad w'_m = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} q(m|\mathbf{x})$$
$$f'_n(\xi|m) = \frac{1}{\sum_{\mathbf{x} \in \mathcal{S}} q(m|\mathbf{x})} \sum_{\mathbf{x} \in \mathcal{S}} \delta(\xi, x_n) q(m|\mathbf{x}), \quad \xi \in \mathcal{X}_n, \quad n \in \mathcal{N}$$

MONOTONIC PROPERTY: $L^{(t+1)} - L^{(t)} \ge 0$, t = 0, 1, 2, ...**REMARK:** Risk of multiple latent underflow in evaluation of $q(m|\mathbf{x})$!

Structural Mixture Model

structural variables:
$$\phi_{mn} \in \{0,1\}, m \in \mathcal{M}, n \in \mathcal{N}$$

 $\phi_{mn} = 0 \Rightarrow$ distribution $f_n(x_n|m)$ is replaced by fixed "background" $f_n(x_n|0)$

$$F(\mathbf{x}|m) = \prod_{n \in \mathcal{N}} f_n(x_n|m)^{\phi_{mn}} f_n(x_n|0)^{1-\phi_{mn}}, \ m \in \mathcal{M}, \ (f_n(x_n|0) = P_n(x_n))$$

$$P(\mathbf{x}) = \sum_{m \in \mathcal{M}} F(\mathbf{x}|m) f(m) = F(\mathbf{x}|0) \sum_{m \in \mathcal{M}} w_m G(\mathbf{x}|m, \phi_m)$$
$$F(\mathbf{x}|0) = \prod_{n \in \mathcal{N}} f_n(x_n|0), \quad G(\mathbf{x}|m, \phi_m) = \prod_{n \in \mathcal{N}} \left[\frac{f_n(x_n|m)}{f_n(x_n|0)} \right]^{\phi_{mn}}$$

"background distribution" F(x|0) cancels in the conditional weights:

$$W_m(\boldsymbol{x}_C) = \frac{w_m G_C(\boldsymbol{x}_C | m, \phi_m)}{\sum_{j=1}^M w_j G_C(\boldsymbol{x}_C | j, \phi_j)}, \quad G_C(\boldsymbol{x}_C | m, \phi_m) = \prod_{i \in \mathcal{C}} \left[\frac{f_i(x_i | m)}{f_i(x_i | 0)} \right]^{\phi_{mi}}$$

Consequence: structural mixture can be treated as dimensionless

Structural Modification of EM Algorithm

structural variables can be optimized in full generality:

$$L = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} \log \left[F(\mathbf{x}|0) \sum_{m \in \mathcal{M}} w_m G(\mathbf{x}|m, \phi_m) \right], \quad F(\mathbf{x}|0) = \prod_{n \in \mathcal{N}} f_n(x_n|0)$$

EM Algorithm: (F(x|0) cancels in the conditional weights q(m|x))

$$q(m|\mathbf{x}) = \frac{G(\mathbf{x}|m, \phi_m)w_m}{\sum_{j \in \mathcal{M}} G(\mathbf{x}|j, \phi_j)w_j}, \quad w'_m = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} q(m|\mathbf{x}), \quad m \in \mathcal{M}, \mathbf{x} \in \mathcal{S}$$
$$f'_n(\xi|m) = \frac{1}{\sum_{\mathbf{x} \in \mathcal{S}} q(m|\mathbf{x})} \sum_{\mathbf{x} \in \mathcal{S}} \delta(\xi, x_n) q(m|\mathbf{x}), \quad n \in \mathcal{N}$$

structural criterion: Kullback-Leibler information divergence

$$\gamma_{mn}^{'} = \sum_{\mathbf{x} \in \mathcal{S}} \frac{q(m|\mathbf{x})}{|\mathcal{S}|} \log \left[\frac{f_{n}^{'}(x_{n}|m)}{f_{n}(x_{n}|0)} \right] = w_{m}^{'} \sum_{x_{n} \in \mathcal{X}_{n}} f_{n}^{'}(x_{n}|m) \log \frac{f_{n}^{'}(x_{n}|m)}{f_{n}(x_{n}|0)}$$

optimization: $\phi^{'}_{mn}=1$ for a fixed number of the highest values $\gamma^{'}_{mn}$

Modification of EM Algorithm for Incomplete Data

"sparse" data vectors, e.g. $\bar{\mathbf{x}} = (x_1, -, x_3, x_4, -, -, x_7, \dots, x_N), x_n \in \mathcal{X}_n$ $\mathcal{N}(\bar{\mathbf{x}}) = \{n \in \mathcal{N} : \text{ for which variable } x_n \text{ is defined in } \bar{\mathbf{x}}\}, \bar{\mathbf{x}} \in S$ $\mathcal{S}_n = \{\bar{\mathbf{x}} \in \mathcal{S} : n \in \mathcal{N}(\bar{\mathbf{x}})\}, \approx \text{ vectors } \bar{\mathbf{x}} \in \mathcal{S} \text{ with defined variable } x_n$

m.-l. estimation from incomplete data:

$$L = \frac{1}{|\mathcal{S}|} \sum_{\bar{\mathbf{x}} \in \mathcal{S}} \log[\sum_{m=1}^{M} w_m F(\bar{\mathbf{x}}|m)], \quad F(\bar{\mathbf{x}}|m) = \prod_{n \in \mathcal{N}(\bar{\mathbf{x}})} f_n(x_n|m)$$

iteration equations: $(m \in \mathcal{M}, n \in \mathcal{N}, \overline{\mathbf{x}} \in \mathcal{S})$

$$q(m|ar{\mathbf{x}}) = rac{w_m F(ar{\mathbf{x}}|m)}{\sum_{j=1}^M w_j F(ar{\mathbf{x}}|j)}, \quad w_m^{'} = rac{1}{|\mathcal{S}|} \sum_{ar{\mathbf{x}} \in \mathcal{S}} q(m|ar{\mathbf{x}})$$
 $f_n^{'}(\xi|m) = rac{1}{\sum_{ar{\mathbf{x}} \in \mathcal{S}_n} q(m|ar{\mathbf{x}})} \sum_{ar{\mathbf{x}} \in \mathcal{S}_n} \delta(\xi, x_n) q(m|ar{\mathbf{x}}), \quad \xi \in \mathcal{X}_n$

Remark: Only available data are used without estimating missing values

Modification of EM Algorithm for Weighted Data

NOTATION: $\gamma(\mathbf{x})$: relative frequency of \mathbf{x} in \mathcal{S}

$$oldsymbol{x}
otin \mathcal{S} \Rightarrow \gamma(oldsymbol{x}) = 0, \quad \Rightarrow \quad \sum_{oldsymbol{x} \in \mathcal{X}} \gamma(oldsymbol{x}) = rac{1}{|\mathcal{S}|} \sum_{oldsymbol{x} \in \mathcal{S}} 1 = 1$$

 \Rightarrow equivalent expression:

$$L = \frac{1}{|\mathcal{S}|} \sum_{\boldsymbol{x} \in \mathcal{S}} \log[\sum_{m \in \mathcal{M}} w_m F(\boldsymbol{x}|m)] = \sum_{\boldsymbol{x} \in \mathcal{X}} \gamma(\boldsymbol{x}) \log[\sum_{m \in \mathcal{M}} w_m F(\boldsymbol{x}|m)]$$

 \Rightarrow weighted iteration equations: $(m \in \mathcal{M}, n \in \mathcal{N}, x \in \mathcal{X})$

$$q(m|\mathbf{x}) = \frac{w_m F(\mathbf{x}|m)}{\sum_{j \in \mathcal{M}} w_j F(\mathbf{x}|j)}, \quad w'_m = \sum_{\mathbf{x} \in \mathcal{X}} \gamma(\mathbf{x}) q(m|\mathbf{x}),$$
$$f'_n(\xi|m) = \sum_{\mathbf{x} \in \mathcal{X}} \delta(\xi, x_n) \gamma(\mathbf{x}) \frac{q(m|\mathbf{x})}{w'_m}, \quad \xi \in \mathcal{X}_n, \quad m \in \mathcal{M}$$

Application: relevance of data in EM algorithm

Feedback

Self-correcting Mechanisms

Self-correcting Mechanisms for Data

- unreliable, suspect or incorrect data can be removed or suppressed by weighting, e.g $\gamma(\mathbf{x}) = \log P(\mathbf{x})/\overline{L}$, $\overline{L} = \frac{1}{|S|} \sum_{\mathbf{x} \in S} \log P(\mathbf{x})$
- sparsely used variable x_n can be removed, e.g. if $\sum_{m \in \mathcal{M}} \phi_{mn}$ is small
- a new variable x_n can be included at any level of design process by specifying the corresponding background distribution f_n(x_n|0)

Self-correcting Mechanisms for Knowledge Base

- initial parameters: expert design of elementary diagnoses (components)
- intuitively designed components will be modified by EM algorithm
- components having small "support" in the data can be identified by small weights w_m and removed
- a new component can be included at any level of design process

Concluding Remarks

Final output for a user:

printed recommendation for a physician including input symptoms, relevant diagnoses, suggested medication and comments

Concluding Remarks and Comments

- administration background (admin.): support of medical experts
- hierarchical lists of diagnoses and questions (admin.)
- sequential inclusion of new questions (open access and admin.)
- sequential inclusion of new components (open access and admin.)
- sequential inclusion of diagnostic areas (admin.)
- supervised accumulation of initial data (physicians, students)
- detailed comments to diagnoses (open access and admin.)
- supervised self-correcting mechanisms (admin.)
- $\bullet\,$ suggested medication and treatment (admin.) $\,\Rightarrow\,$ financial support

References 1/3

- Ben-Bassat, M. (1978): Myopic policies in sequential classification, IEEE Trans. Computers, C-27, pp. 170-174.
- Ben-Bassat, M. (1980): Pattern-Based Interactive Diagnosis of Multiple Disorders: The MEDAS System, IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-2, 148-160.
- Fu, K.S. (1968): Sequential Methods in Pattern Recognition and Machine Learning, New York: Academic. http:// dx.doi.org/10.1016/j.patrec.2014.02.024
- Hussain, A.B.S., Donaldson, R.W. (1974): Suboptimal sequential decision schemes with on-line feature ordering, IEEE Trans. Computers, C-23, pp. 582-590.

References 2/3

- J. Grim, On numerical evaluation of maximum likelihood estimates for finite mixtures of distributions, *Kybernetika*, Vol. 18, No.3, pp.173-190, 1982. *http://dml.cz/dmlcz/124132*
- Grim J.: Multivariate statistical pattern recognition with non-reduced dimensionality. Kybernetika, **22** 6, 142–157 (1986)
- Grim J. (1992): A dialog presentation of census results by means of the probabilistic expert system PES, in *Proceedings of the Eleventh Europeccn Meeting on Cybernetics and Systems Research*, (Ed. R.Trappl), Vienna, April 1992, World Scientific, Singapore 1992, pp. 997-1005.
- Grim J.: Knowledge representation and uncertainty processing in the probabilistic expert system PES, *International Journal of General Systems*, Vol. 22, No. 2, pp. 103 111, 1994.

References 3/3

- Grim J., Hora J., Somol P., Boček P., Pudil, P. (2010): Statistical Model of the 2001 Czech Census for Interactive Presentation. *Journal of Official Statistics*. Vol. 26, No. 4, pp. 673–694.
- Grim J. DEMO: Interactive Statistical Model of the 2001 Czech Census: *http://ro.utia.cas.cz/dem.html*
- Grim, J., Pudil, P., Somol, P.: Recognition of handwritten numerals by structural probabilistic neural networks. In: Proceedings of the Second ICSC Symposium on Neural Computation. (Bothe, H., Rojas, R. eds.). ICSC, Wetaskiwin (2000) 528-534
- Grim J., Somol P., Haindl M., Danes J. (2009): Computer-Aided Evaluation of Screening Mammograms Based on Local Texture Models. *IEEE Transactions on Image Processing 18(4): 765-773* Paper Award
- Grim, J. (2014). Sequential pattern recognition by maximum conditional informativity. *Pattern Recognition Letters*, Vol. 45C, pp. 39-45.
 - Grim J. Product Mixtures I., Product Mixtures II., (Presentation), http://ro.utia.cas.cz/dem.html

