Computational Properties of Probabilistic Neural Networks

Jiří Grim and Jan Hora

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic, Prague

Department of Pattern Recognition

http://www.utia.cas.cz/RO

ICANN'10, Thessaloniki, September 15-18, 2010

Outline

1 Overfitting in Neural Networks

- Probabilistic Neural Networks
 - Statistical Pattern Recognition Based on Mixtures
 - Structural Mixture Model

Output: State of the state o

- Randomly Generated Chess-Board Patterns
- Marginal Probabilities of the Chess-Board Patterns
- Recognition of Chess-board patterns
- Recognition of Chess-board patterns

4 Concluding Remarks

Overfitting in Neural Networks

problem of overfitting

- small multidimensional training data sets (pprox insufficiently representative)
- ullet \Rightarrow "overfitting" of parameters to training data
- $\bullet \Rightarrow$ bad "generalizing property" caused by overfitting
- a general analysis of overfitting is difficult

to reduce the risk of overfitting:

- dimensionality reduction and/or large data sets
- cross-validation techniques
- "under-computing": stopping rule for training
- optimal complexity of classifiers

Probabilistic Neural Networks:

structural mixtures \Rightarrow reduced complexity \Rightarrow less prone to overfitting

Statistical Pattern Recognition Based on Mixtures

- $\mathbf{x} = (x_1, \dots, x_N) \in \mathcal{X}:$ N-dimensional data vectors $\Omega = \{\omega_1, \omega_2, \dots, \omega_J\}:$ finite number of classes $P(\mathbf{x}|\omega)p(\omega), \quad \omega \in \Omega:$ conditional distributions of classes

approximation of $P(\mathbf{x}|\omega)$ by mixtures of product components:

$$P(\mathbf{x}|\omega) = \sum_{m \in \mathcal{M}_{\omega}} f(m)F(\mathbf{x}|m), \quad P(\mathbf{x}) = \sum_{\omega \in \Omega} p(\omega)P(\mathbf{x}|\omega)$$
$$F(\mathbf{x}|m) = \prod_{n \in \mathcal{N}} \theta_{mn}^{x_n} (1 - \theta_{mn})^{1 - x_n}, \quad 0 \le \theta_{mn} \le 1, \quad m \in \mathcal{M}_{\omega}, \quad \mathcal{M} = \sum_{\omega \in \Omega} \mathcal{M}_{\omega}$$

decision making based on Bayes formula:

$$p(\omega|\mathbf{x}) = \frac{P(\mathbf{x}|\omega)p(\omega)}{P(\mathbf{x})} = \sum_{m \in \mathcal{M}_{\omega}} q(m|\mathbf{x}), \qquad q(m|\mathbf{x}) = \frac{w_m F(\mathbf{x}|m)}{\sum_{j \in \mathcal{M}} w_j F(\mathbf{x}|j)}$$

probabilistic neuron pprox mixture component

Structural Mixture Model (Grim et al. 1986, 1999, 2002)

$$F(\mathbf{x}|m) = \prod_{n \in \mathcal{N}} f_n(x_n|m)^{\phi_{mn}} f_n(x_n|0)^{1-\phi_{mn}}, \qquad \phi_{mn} \in \{0,1\} \approx \text{structure}$$
$$f_n(x_n|m) = \theta_{mn}^{x_n} (1-\theta_{mn})^{1-x_n}, \qquad n \in \mathcal{N}, \quad \mathcal{N} = \{1, \dots, N\}$$

$$\begin{split} \phi_{mn} &= 0 \implies f_n(x_n|m) \text{ is replaced by fixed "background" } f_n(x_n|0) \\ P(\mathbf{x}|\omega) &= \sum_{m \in \mathcal{M}_{\omega}} F(\mathbf{x}|m) f(m) = F(\mathbf{x}|0) \sum_{m \in \mathcal{M}_{\omega}} G(\mathbf{x}|m,\phi_m) f(m) \\ F(\mathbf{x}|0) &= \prod_{n \in \mathcal{N}} f_n(x_n|0), \quad G(\mathbf{x}|m,\phi_m) = \prod_{n \in \mathcal{N}} \left[\frac{f_n(x_n|m)}{f_n(x_n|0)} \right]^{\phi_{mn}} \\ G(\mathbf{x}|m,\phi_m) &\approx \text{ defined on different subspaces } & \text{OPTIMIZATION: EM algorithm} \\ p(\omega|\mathbf{x}) &= \frac{P(\mathbf{x}|\omega)p(\omega)}{P(\mathbf{x})} = \frac{\sum_{m \in \mathcal{M}_{\omega}} w_m G(\mathbf{x}|m,\phi_m)}{\sum_{j \in \mathcal{M}} w_j G(\mathbf{x}|j,\phi_j)} \end{split}$$

 \Rightarrow "background distribution" $F(\mathbf{x}|\mathbf{0})$ cancels in the Bayes formula

Chess-Board Patterns Made by Rook and Knight

16x16 chess-board patterns: 256-dimensional binary vectors **generating patterns:** random moves until 10 different positions chess-piece position coded by $x_n = 1$

		н. 47				· · · •.	: ::	· · · 2 · · •	· · ·		1		÷		2 - 1	* ** •	÷	۰۰ : ۱۰۰ :	: -
:.: 		· · ·	. i r	; ;								• ••••		::			:.:. 		••••
	1	4.	 	: : ::		÷		њ¢			:	: 			: : :	. ::.	1.1	· · · · .	: :
	н. 	- 10	· · · ·		24	.:		÷		.				:		· · · · ·			<u>.</u>
-4-4	:: ! ::	i 	:	5		: '-:		- · ·	• •	: ' :		1			•			· · :	· .
		-		-															
ė		े	2	4-4.	- W.	<u>م</u> ر ۲	ġ.	\$	9.	2	200	×.	÷	2	Ņ,	ť	*	4	Чų.
ە 	100 K	\$ *	1989 1980	ž v	-W 7.,	\sim	8 K	5. 19.7 5.	on ÿ	34 X	N	1. 1.	*. *	~) *	$-h_{\rm c} \ll$	⁴ ε	74 100	1 2	× ~
*. 	100 F	e) * ~?	1949 - S	5 00 T	-11 Za \$	~ > - {	₹ <u>₹</u> **	Sec. 18	10. 7	34 34 84 84 84 84 84 84 84 84 84 84 84 84 84	× ×		* × 5	~~ * *	14, 20 / S	1 5 ^{0×}	¥	1 2 3	n 4 1
** · · · · · · · · · · · · · · · · · ·	22 0 O		1990 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	S 00 90 100	$\sim Z_{\rm p} \gg - Z_{\rm c}$	2 2 4	₹ 8 °0 *	Sec. 1997 - 1998	0. y 9. yr	³ ∀ * ³ *	2 ⁷⁷		* * 5 *	\×∕~	14 14 J 13	t 5 × 3	* * * *	1. Z . 200	₩ < ^

training and testing data: 100000 binary vectors for each class

Marginal Probabilities of the Chess-Board Patterns

class-means of training numerals ("mean images")

left: rook-made patterns

right: knight-made patterns

Binary data Marginals Recognition of Numerals Recognition of Numerals

Component Parameters of the Estimated Mixtures $P(\mathbf{x}|\omega)$

component parameters θ_{mn} in chess-board arrangement

	10.00	191					Sec.	96	*		100	*	il.		*	*
						1111	198	**	1	÷	all a	*	30	*	Sec.	*
							-	1	*		*		000	*	1995	*
							H.	- 32	÷.	100		*	1000	si.	1480	*
				1			198	10	*	1	100	WWP.	*	-	A.	W.
							ų.		*	*			*	(All)	-	*
11 K								100	*	海	000	1	10		194	-
			-		100		10	100	*	90.	8	N	業	100	300	*
							-	*	*	18	*	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	*	- 360	100	380
							*	M	条	*	H.	聯	*	diffe	16	dill.

left: rook-made patterns

right: knight-made patterns

Recognition of Chess-board patterns: full model

Recognition error of the full multivariate Bernoulli mixture model in %

М	1 000	200 000	10 000	200 000	100 000	200 000
2	34.70	41.56	39.59	40.38	39.90	40.02
4	13.10	15.83	16.54	16.65	16.42	16.48
10	1.65	7.72	6.60	7.00	6.49	6.60
20	0.95	9.21	5.40	5.90	4.04	4.34
40	0.15	8.76	3.91	4.90	2.73	2.89
100	0.00	9.35	2.01	4.54	1.37	1.90
200	0.00	11.02	1.22	5.57	0.84	1.68
400	0.00	15.40	0.69	8.35	0.45	1.92
1000	0.00	17.77	0.20	14.66	0.14	3.76

Recognition of Chess-board patterns: subspace model

Recognition error of the structural Bernoulli mixture model in %

М	1 000	200 000	10 000	200 000	100 000	200 000
4	13.80	16.48	25.53	26.53	16.91	16.92
8	6.45	9.97	10.96	11.32	7.28	7.29
20	5.70	10.97	5.14	5.77	4.70	4.72
40	8.65	13.63	4.20	4.73	3.29	3.32
80	4.20	12.91	6.12	6.88	1.91	1.92
200	0.25	11.46	3.36	4.76	1.83	1.85
400	0.00	18.11	3.54	4.70	3.10	3.20
800	0.00	18.50	3.88	4.82	5.42	5.45
2000	0.00	18.75	2.84	6.39	2.71	2.73

Problem of Overfitting Probabilistic NN Example Conclusion

Concluding Remarks

Overfitting of Structural Mixture Model

• probabilistic

Problem of Overfitting Probabilistic NN Example Conclusion

Structural Modification of EM Algorithm

STRUCTURAL OPTIMIZATION: can be included into EM algorithm

$$L = \frac{1}{|\mathcal{S}_{\omega}|} \sum_{\mathbf{x} \in \mathcal{S}_{\omega}} \log \Big[\sum_{m \in \mathcal{M}_{\omega}} F(\mathbf{x}|0) G(\mathbf{x}|m, \phi_m) w_m \Big], \qquad F(\mathbf{x}|0) = \prod_{n \in \mathcal{N}} f_n(x_n|0)$$

$$\begin{split} \text{EM Algorithm:} & (m \in \mathcal{M}_{\omega}, n \in \mathcal{N}, \mathbf{x} \in \mathcal{S}_{\omega}) \\ & q(m|\mathbf{x}) = q(m|\mathbf{x}, \omega) = \frac{G(\mathbf{x}|m, \phi_m)w_m}{\sum_{j \in \mathcal{M}_{\omega}} G(\mathbf{x}|j, \phi_j)w_j}, \\ & w_m^{'} = \frac{1}{|\mathcal{S}_{\omega}|} \sum_{\mathbf{x} \in \mathcal{S}_{\omega}} q(m|\mathbf{x}), \qquad \theta_{mn}^{'} = \frac{1}{\sum_{\mathbf{x} \in \mathcal{S}_{\omega}} q(m|\mathbf{x})} \sum_{\mathbf{x} \in \mathcal{S}_{\omega}} x_n q(m|\mathbf{x}) \end{split}$$

structural criterion: (Kullback-Leibler I-divergence)

$$\gamma_{mn}^{'} = w_m^{'} \left[heta_{mn}^{'} \log rac{ heta_{mn}^{'}}{ heta_{0n}} + (1 - heta_{mn}^{'}) \log rac{(1 - heta_{mn}^{'})}{(1 - heta_{0n})}
ight]$$

structural parameter optimization: $\phi'_{mn} = 1$ for the *r* highest values γ'_{mn} Remark. The "structural" EM algorithm converges monotonically.

References 1/4

- Dempster, A.P., Laird, N.M., & Rubin, D.B., (1977): Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Stat. Soc., B 39, pp. 1-38.
- Dietterich, T.: Overfitting and undercomputing in machine learning. ACM Computing Surveys, 3 **27** (1995) 326-327
- Grim J.: Multivariate statistical pattern recognition with nonreduced dimensionality. *Kybernetika*, **22** (1986) 142-157.
- Grim J.: Information approach to structural optimization of probabilistic neural networks. In proceedings of: *4th System Science European Congress*, Ferrer, L. et al. (Eds.), (pp. 527-540), Valencia: Soc. Espanola de Sistemas Generales, (1999)
- Grim, J.: Neuromorphic features of probabilistic neural networks. *Kybernetika.*, 5 **43** (2007) 697–712

References 2/4

- Grim, J., Pudil, P., Somol, P.: Recognition of handwritten numerals by structural probabilistic neural networks. In: *Proc. Second ICSC Symposium on Neural Computation.* (Bothe, H., Rojas, R. eds.). ICSC, Wetaskiwin (2000) 528-534
- Grim, J., Just, P., Pudil, P.: Strictly modular probabilistic neural networks for pattern recognition. Neural Network World, **13** (2003) 599-615
- Grim J., Hora, J.: "Iterative principles of recognition in probabilistic neural networks." *Neural Networks, Special Issue, 6* **21** (2008) 838–846
- McLachlan, G.J., Peel, D.: Finite Mixture Models, John Wiley and Sons, New York, Toronto (2000)
- Vajda, I., (1992): Theory of Statistical Inference and Information. Boston: Kluwer.

References 3/4

- Sarle, W.S.: Stopped training and other remedies for overfitting. In: Proceedings of the 27th Symposium on the Interface. (1995) Available via ftp://ftp.sas.com/pub/neural/inter95.ps.Z.
- Schaffer C.: Overfitting avoidance as Bias. *Machine Learning*, 2 **10** (1993) 153–178.
- Schlesinger, M.I.: Relation between learning and self-learning in pattern recognition. (in Russian), *Kibernetika*, (Kiev), No. 2 (1968) 81-88.
- Specht, D.F.: Probabilistic neural networks for classification, mapping or associative memory. In: Proc. IEEE Int. Conf. on Neural Networks, I (1988) 525–532
- Yinyin L., Starzyk J.A., Zhen Zhu: Optimized Approximation Algorithm in Neural Networks Without Overfitting. *IEEE Tran. Neural Networks*, 19 (2008) 983–995

