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Overfitting in Neural Networks

problem of overfitting

small multidimensional training data sets (≈ insufficiently representative)

⇒ ”overfitting”of parameters to training data

⇒ bad ”generalizing property”caused by overfitting

a general analysis of overfitting is difficult

to reduce the risk of overfitting:

dimensionality reduction and/or large data sets

cross-validation techniques

”under-computing”: stopping rule for training

optimal complexity of classifiers

Probabilistic Neural Networks:

structural mixtures ⇒ reduced complexity ⇒ less prone to overfitting
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Statistical Pattern Recognition Based on Mixtures

x = (x1, . . . , xN) ∈ X : N-dimensional data vectors

Ω = {ω1, ω2, . . . , ωJ}: finite number of classes

P(x|ω)p(ω), ω ∈ Ω: conditional distributions of classes

approximation of P(x|ω) by mixtures of product components:

P(x|ω) =
∑

m∈Mω

f (m)F (x|m), P(x) =
∑
ω∈Ω

p(ω)P(x|ω)

F (x|m) =
∏
n∈N

θxn
mn(1− θmn)1−xn , 0 ≤ θmn ≤ 1, m ∈Mω, M =

∑
ω∈Ω

Mω

decision making based on Bayes formula:

p(ω|x) =
P(x|ω)p(ω)

P(x)
=

∑
m∈Mω

q(m|x), q(m|x) =
wmF (x|m)∑
j∈M wjF (x|j)

probabilistic neuron ≈ mixture component
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Structural Mixture Model (Grim et al. 1986, 1999, 2002)

F (x|m) =
∏
n∈N

fn(xn|m)φmn fn(xn|0)1−φmn , φmn ∈ {0, 1} ≈ structure

fn(xn|m) = θ xn
mn(1− θmn)1−xn , n ∈ N , N = {1, . . . ,N}

φmn = 0 ⇒ fn(xn|m) is replaced by fixed “background” fn(xn|0)

P(x|ω) =
∑

m∈Mω

F (x|m)f (m) = F (x|0)
∑

m∈Mω

G (x|m,φm)f (m)

F (x|0) =
∏
n∈N

fn(xn|0), G (x|m,φm) =
∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

G (x|m,φm) ≈ defined on different subspaces OPTIMIZATION: EM algorithm

p(ω|x) =
P(x|ω)p(ω)

P(x)
=

∑
m∈Mω

wmG (x|m,φm)∑
j∈M wjG (x|j ,φj)

⇒ “background distribution” F (x|0) cancels in the Bayes formula
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Chess-Board Patterns Made by Rook and Knight

16x16 chess-board patterns: 256-dimensional binary vectors

generating patterns: random moves until 10 different positions
chess-piece position coded by xn = 1

training and testing data: 100000 binary vectors for each class
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Marginal Probabilities of the Chess-Board Patterns

class-means of training numerals (“mean images”)

left: rook-made patterns right: knight-made patterns
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Component Parameters of the Estimated Mixtures P(x|ω)

component parameters θmn in chess-board arrangement

left: rook-made patterns right: knight-made patterns
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Recognition of Chess-board patterns: full model

Recognition error of the full multivariate Bernoulli mixture model in %

M 1 000 200 000 10 000 200 000 100 000 200 000

2 34.70 41.56 39.59 40.38 39.90 40.02

4 13.10 15.83 16.54 16.65 16.42 16.48

10 1.65 7.72 6.60 7.00 6.49 6.60

20 0.95 9.21 5.40 5.90 4.04 4.34

40 0.15 8.76 3.91 4.90 2.73 2.89

100 0.00 9.35 2.01 4.54 1.37 1.90

200 0.00 11.02 1.22 5.57 0.84 1.68

400 0.00 15.40 0.69 8.35 0.45 1.92

1000 0.00 17.77 0.20 14.66 0.14 3.76
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Recognition of Chess-board patterns: subspace model

Recognition error of the structural Bernoulli mixture model in %

M 1 000 200 000 10 000 200 000 100 000 200 000

4 13.80 16.48 25.53 26.53 16.91 16.92

8 6.45 9.97 10.96 11.32 7.28 7.29

20 5.70 10.97 5.14 5.77 4.70 4.72

40 8.65 13.63 4.20 4.73 3.29 3.32

80 4.20 12.91 6.12 6.88 1.91 1.92

200 0.25 11.46 3.36 4.76 1.83 1.85

400 0.00 18.11 3.54 4.70 3.10 3.20

800 0.00 18.50 3.88 4.82 5.42 5.45

2000 0.00 18.75 2.84 6.39 2.71 2.73
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Concluding Remarks

Overfitting of Structural Mixture Model

probabilistic
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Structural Modification of EM Algorithm

STRUCTURAL OPTIMIZATION: can be included into EM algorithm

L =
1

|Sω|
∑

x∈Sω

log
[ ∑

m∈Mω

F (x|0)G (x|m,φm)wm

]
, F (x|0) =

∏
n∈N

fn(xn|0)

EM Algorithm: (m ∈Mω, n ∈ N , x ∈ Sω)

q(m|x) = q(m|x, ω) =
G (x|m,φm)wm∑
j∈Mω

G (x|j ,φj)wj
,

w
′

m =
1

|Sω|
∑

x∈Sω

q(m|x), θ
′

mn =
1∑

x∈Sω
q(m|x)

∑
x∈Sω

xnq(m|x)

structural criterion: (Kullback-Leibler I-divergence)

γ
′

mn = w
′

m

[
θ

′

mn log
θ

′

mn

θ0n
+ (1− θ

′

mn) log
(1− θ′

mn)

(1− θ0n)

]
structural parameter optimization: φ

′

mn = 1 for the r highest values γ
′

mn

Remark. The “structural” EM algorithm converges monotonically.
Back
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