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Probabilistic Features

Feature Extraction for Classification

statistical classification methods:

o purpose of feature extraction: to reduce dimensionality in order to
simplify decision making

@ goal: small number of highly informative features

biological neural networks:

@ output of neuron = feature extracted from input layer neurons
@ purpose: to extract simple features rather than to reduce dimensionality

@ goal: large number of output neurons (features) which respond to
highly specific input patterns

@ => complex input signals are coded by labels of output neurons

@ => no decision making is necessary




Probabilistic NN Product Mixtures Structural Model Probabilistic Neuron

Statistical Pattern Recognition Based on Mixtures

x = (x1,...,xy) € X: N-dimensional data vectors
Q ={wi,ws,...,wy}: finite number of classes

P(x|w)p(w), w € Q: conditional distributions of classes

approximation of P(x|w) by mixtures of product components:

PXlw)= > f(mF(xim), > f(m)=1 M= ] M..

meM,, meM,, we
P(x) =Y pw)PXw) = > wnF(x|m), wpn=p(w)f(m),
we meM

decision making based on Bayes formula:

p(wx) = P(XJ;L&F))(W) = Z q(m|x), q(m|x) = Z%
meM,, JE ]

probabilistic neuron ~ mixture component [OTia)



Probabilistic NN Product Mixtures Structural Model Probabilistic Neuron

Structural Mixture Model (Grim et al. 1986, 1999, 2002)

= H fir(Xn| M) £y (x| 0) 1~ Pon dmn € {0,1} = structure
neN

¢mn = 0 = distribution f,(x,|m) is replaced by fixed “background” f,(x,|0)

Pxlw)= > F(x|m = F(x[0) Y G(x|m,,)f(m)
meM,, meM,,
Fo(Xa| ) %"
F(x[0) = | | fa(xa[0), G(x|m, ¢,) =
n1€_./[\/ nle—_/[\/ |: f"(X”|0) :l

structural model can be optimized in full generality by

“background distribution” F(x|0) cancels in the Bayes formula:

(w| ) P(X|w) ( ) — ZmGM (x|m d)m)
P(x) ZJEM w; G(x|j, #;)

G(x|m, ¢,,) ~ may depend on different subsets of variables [OTia



Probabilistic NN Product Mixtures Structural Model Probabilistic Neuron

Properties of Features in Probabilistic Neural Networks

one output neuron for each class w € Q:

W G(x|m, ¢,,
plwx)= > q(mIX)szEM“’ xmo )% > waG(x|m, ¢,,)

meM.,, ZJGM VVJG(X|J’¢_[) meM.,,

(statistically correct subspace approach to Bayesian decision making)

hidden layer neuron:

Ym(X) = Tm(x) = log [q(m|x)] = log

G(x|m, @)W
> iem G(xl, d))w;

nearly binary properties of g(m|x):

1
max = ) Gmax = Tar max 1
Gmax(x) = max {a(ml)}, Gmex = 15 gq x(X)  —

Remark: for N~ 102 : Gmax ~ 0.99
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Probabilistic Features Information Property Binary Features

Information Preserving Property

Theorem (Grim et al. 1996, 1998):

The mixture based transform T : X — ), Y € RM defined by

Ym = Tr(x) = log(g*(m|x)), x€ X, me M
preserves the statistical decision information by Shannon
(X, M) =1(Y, M)

given the true conditional probabilities ¢*(m|x).
Simultaneously the entropy of the transformed distribution is minimized:

HO) =Y —Q(y)log Qy) — min,  Q(y) = P(T X(y))

yey

Idea of the proof: The transform T “unifies” the points x € X with the
same posterior distributions ¢g*(.[x) = no information loss.
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Probabilistic Features Information Property Binary Features

Extraction of Binary Features by PNN

regularized binary features:

Ym = Tm(x) = log[g(m|x) + dwy], 6 >0, xe X, me M

Theorem (Grim 1998):

If the transform T satisfies for some 9, € > 0 the inequality

[Tm(x) —In[g*(m|x) + wyd]| <e, e>0, meM, xeX
then the arising information loss is bounded by the inequality

(X, M) — (P, M) < 6+ 2€

binary features obtained by simple thresholding:

_ _J 1, q(mlx) >0,
Ym = Tm(x) = { 0 q(mlx) <6, 0<f<1

—To(x) = 1, log[G(x|m, ¢, )wm] > logb + log P(x)
Ym = TmI =30, log[G(x|m, ¢,,)Wm] < log 0+ log P(x)
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Example NIST databas g

NIST SD19 Database of Hand- ertten Numerals

NIST Special Database SD19: about 400000 handwritten numerals
examples of numerals normalized to 32x32 binary raster
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Example NIST database Recognition of Numerals Recognition of Numerals

Numerical Experiment: Recognition of the NIST Numerals

data split: odd data vectors for training, even data vectors for testing
(200000 training numerals and 200000 testing numerals)

all numerals normalized to 32x32 binary raster
three differently rotated variants of each digit pattern included
initial number of components chosen identically in all classes

randomly initialized mixture parameters

® 6 o o o

stopping rule: relative increment threshold

goals of the computational experiments:
@ to compare recognition accuracy in the input space and feature space
@ to test the influence of model complexity
@ to illustrate the decrease of entropy in the feature space:

HY) ~ ‘S|Z log Q(y(x)) = Y _ —Q(y) log Q(y)

S|—o0
\ \ =y
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Example NIST database Recognition of Numerals Recognition of Numerals

Recognition of Numerals From the NIST SD19 Database

Classification of numerals from the NIST SD19 database by differently
complex mixtures.
Comparison of the accuracy in the input space and in the feature space.

Experiment No.: 1 2 3 4 5
Number of Components 100 357 695 1119 1382
Number of Parameters 96046 | 243293 | 533628 | 574159 | 1027691
No. of Parameters in % 93.8 66.5 75.0 50.1 72.6
Mean No. of Units in y 1.22 1.32 1.44 1.39 1.50
Log-Likelihood for P(x) -295.8 | -265.8 | -242.0 | -239.8 -235.3
Log-Likelihood for P(y) -6.21 -7.95 -9.19 -9.48 -10.09
Recognition Accuracy

Error in % (Input space) 5.46 3.24 2.52 221 2.12
Error in % (Feature space) 5.21 3.17 2.46 2.10 2.08
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Concluding Remarks

Properties of Probabilistic Binary Features

@ probabilistic features simplify decision making by reducing the feature
complexity rather than dimensionality of the problem

@ in the input space X the recognition accuracy increases with the model
complexity (number of components)

@ the recognition accuracy based on the proposed binary features is
slightly better in all experiments

@ in the binary feature space ) the recognition accuracy does not increase
with the model complexity, only one component has been used to
estimate the class-conditional distributions Q(y|w)

@ = the resulting binary features appear to be almost conditionally
independent with respect to classes

@ in the feature space ) the entropy of the transformed distribution is
much less than in the input space X




Structural Modification of EM Algorithm

STRUCTURAL OPTIMIZATION: can be included into EM algorithm

Z og | Y F(XI0)G(xIm dm)wm|,  F(x|0) = [T flxnl0)
XES meM,, neN
EM Algorithm: (me M, ,ne N ,x € S,)
G(xhn7¢m)wh
q(m|x) = g(m|x,w) = :
(m[x) = q(m|x,w) e, (‘qu)
w,, m|x 0;,,,, = Xpq(m|x
~ gy X o s alm) 2

xXES, XES

structural criterion: (Kullback-Leibler I-divergence)

’ ’

A —0,,)
(1= 6on)

structural parameter optimization: ¢, = 1 for the r highest values 7.~

’ ’ ’ Hmn ’
Vn = Wpy | Omn 108 o +(1-6,,)log

Remark. The “structural” EM algorithm converges monotonically.
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Component Means of the Estimated Mixtures P(x|w)

component parameters ,,, € (0, 1) displayed as grey levels in raster
arrangement (the white fields denote unused variables with ¢, = 0)
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