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Jǐŕı Grim and Jan Hora

Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic, Prague

Department of Pattern Recognition
http://www.utia.cas.cz/RO

ICANN’09, Limassol, September 14-17, 2009



Outline

Outline

1 Statistical Pattern Recognition
Bayes Decision Scheme

2 Non-exclusive Properties
Binary Recognition of Non-exclusive Properties
One-Class-Classifier of Non-exclusive Properties

3 One-Class-Classification by Probabilistic Neural Networks
Structural Mixture Model
Identification of Properties by Log-Likelihood Ratio

4 Numerical Experiment: Classification of Numerals
NIST SD19 Database of Hand-Written Numerals
Bayesian Recognition of Mutually Exclusive Numerals
Recognition of Numerals by One-Class Classifier

5 Concluding Remarks



Bayes approach Non-exclusive Properties PNN Example Conclusion Bayes rule

Bayes Decision Scheme

x = (x1, . . . , xN) ∈ X : N-dimensional binary data vectors, N = {1, . . . ,N}
Ω = {ω1, ω2, . . . , ωJ}: finite number of classes, probability p(ω), ω ∈ Ω

P(x|ω)p(ω), ω ∈ Ω: conditional distributions of classes

full statistical decision information: a posteriori probabilities

p(ω|x) =
P(x|ω)p(ω)

P(x)
, x ∈ X , ω ∈ Ω,

Bayes decision function: minimum-error classification

d : X → Ω, d(x) = arg max
ω∈Ω
{p(ω|x)} = arg max

ω∈Ω
{P(x|ω)p(ω)}, x ∈ X

formula of complete probability implies mutually exclusive classes

P(x) =
∑
ω∈Ω

P(x|ω)p(ω), x ∈ X

real life categories are usually non-exclusive

⇒ we propose: identification of non-exclusive properties
by using statistical one-class classifiers
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Binary Recognition of Non-exclusive Properties

finite set of non-exclusive properties: Ω = {ω1, . . . , ωK}
two alternatives for each property ω ∈ Ω:

ω: the property has been identified (positive decision)
ω̄: the property has not been identified (negative decision)

⇒ finite number of binary classification problems: {ω, ω̄}, (ω ∈ Ω)

two training data sets: Sω = {x(1), . . . , x(Kω)}, Sω̄ = {x(1), . . . , x(Kω̄)}
probabilistic description: P(x|ω)p(ω), P(x|ω̄)p(ω̄)

⇒ Bayesian decision-making:

p(ω|x) =
P(x|ω)p(ω)

P(x)
, p(ω̄|x) =

P(x|ω̄)p(ω̄)

P(x)

dω : X → {ω, ω̄}, dω(x) =

{
ω, p(ω|x) ≥ p(ω̄|x),
ω̄, p(ω|x) < p(ω̄|x),

x ∈ X

PROBLEM: ”negative”training data sets Sω̄ are rarely available
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Identification of Properties by One-Class-Classifiers

one-class classifier: only one training set for each property ω ∈ Ω :

Sω = {x(1), x(2), . . . , x(Kω)}, (a priori probability p(ω) unknown )

⇒ class-conditional distribution P(x|ω) for the “target” class only
⇒ Bayes rule not applicable
⇒ classification of properties by thresholding P(x|ω)

we propose: thresholding of the log-likelihood ratio:

∆ω(x) = log
P(x|ω)∏

n∈N fn(xn|0)
≥ εω, x ∈ X

fn(xn|0) = θxn
0n(1− θ0n)1−xn , n ∈ N ≈ unconditional marginal probabilities

the threshold εω can be related to the mean value of ∆ω(x):

εω =
1

|Sω|
∑

x∈Sω

log
P(x|ω)∏

n∈N fn(xn|0)
→

∑
x∈X

P∗(x|ω) log
P∗(x|ω)∏

n∈N fn(xn|0)

εω converges to the Kullback-Leibler I-divergence



Bayes approach Non-exclusive Properties PNN Example Conclusion Structural PNN Properties by PNN

Structural Mixture Model

φmn ∈ {0, 1} ≈ binary structural parameters (Grim et al. 1999, 2002)

P(x|ω) =
∑

m∈Mω

F (x|m)f (m) =
∑

m∈Mω

f (m)
∏
n∈N

fn(xn|m)φmn fn(xn|0)1−φmn

φmn = 0 ⇒ distribution fn(xn|m) is replaced by fixed “background” fn(xn|0)

Mω ≈ component index set of the property ω ∈ Ω

P(x|ω) = F (x|0)
∑

m∈Mω

G (x|m,φm)f (m), F (x|0) =
∏
n∈N

fn(xn|0)

univariate distributions: fn(xn|m) = θxn
mn(1− θmn)1−xn , θmn ∈ 〈0, 1〉

G (x|m,φm) =
∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

=
∏
n∈N

[(
θmn

θ0n

)xn
(

1− θmn

1− θ0n

)1−xn
]φmn

G (x|m,φm) ≈ may depend on different subsets of variables

structural model can be optimized in full generality EM algorithm
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Identification of Non-exclusive Properties by PNN

mixture-based one-class classifier:

∆ω(x) = log
P(x|ω)∏

n∈N fn(xn|0)
= log

P(x|ω)

F (x|0)
= log

∑
m∈Mω

G (x|m,φm)f (m) ≥ εω

decision threshold εω : related to the mean value of ∆ω(x)

εω =
c0

|Sω|
∑

x∈Sω

∆ω(x) =
c0

|Sω|
∑

x∈Sω

log
∑

m∈Mω

G (x|m,φm)f (m)

c0 ≈ a constant to balance false positive and false negative decisions
(to be optimized by validation set)

mean value of ∆ω(x) ≈ maximum-likelihood criterion

Lω =
1

|Sω|
∑

x∈Sω

log P(x|ω)

Lω =
1

|Sω|
∑

x∈Sω

log F (x|0) +
1

|Sω|
∑

x∈Sω

log

[ ∑
m∈Mω

G (x|m,φm)f (m)

]
probabilistic neuron
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NIST SD19 Database of Hand-Written Numerals

NIST Special Database SD19: about 400000 handwritten numerals

examples of numerals normalized to 32x32 binary raster

class-means (“mean images”) of training numerals
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Computational Experiment

DATA

odd data vectors for training (
∑
|Sω| = 201485 numerals)

even data vectors for testing (
∑
|ST
ω | = 201479 numerals)

all numerals normalized to 32x32 binary raster

database extend by three differently rotated variants of each pattern
(by -10,-5,+5 degrees)

estimation of class-conditional structural mixtures:

conditional distributions P(x|ω) estimated from Sω for all ω ∈ Ω

initial number of components chosen identically in all classes: Mω = 200

randomly initialized mixture parameters

stopping rule: relative increment threshold

GOAL: to compare one-class classifiers with the mutually exclusive
Bayesian decision-making - using the same distributions P(x|ω)
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Bayesian Recognition of Mutually Exclusive Numerals

in rows: frequencies of decisions for test data from the respective classes
last column: percentage of false negative decisions in the class
last row: total false positive frequencies (in % of all test patterns)

CLASS 0 1 2 3 4 5 6 7 8 9 False n.

] Test s. 20182 22352 20038 20556 19577 18303 19969 20947 19790 19767

0 19950 8 43 19 39 32 36 0 38 17 1.1%

1 2 22162 30 4 35 7 18 56 32 6 0.9%

2 32 37 19742 43 30 9 8 29 90 16 1.5%

3 20 17 62 20021 4 137 2 28 210 55 2.6%

4 11 6 19 1 19170 11 31 51 30 247 2.1%

5 25 11 9 154 4 17925 39 6 96 34 2.1%

6 63 10 17 6 23 140 19652 1 54 3 1.6%

7 7 12 73 10 73 4 0 20497 22 249 2.1%

8 22 25 53 97 30 100 11 11 19369 72 2.1%

9 15 13 25 62 114 22 3 146 93 19274 2.5%

] False p. 197 139 537 396 352 462 148 328 665 699

False p. 0.09% 0.07% 0.27% 0.20% 0.17% 0.23% 0.07% 0.16% 0.33% 0.35% 1.84%

Remark: one decision for each data vector
mean false negative: 1.84%
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Recognition of Numerals by Using One-Class Classifiers

in columns: frequencies of positive decisions for the respective classifiers

CLASS 0 1 2 3 4 5 6 7 8 9

] Test s. 20182 22352 20038 20556 19577 18303 19969 20947 19790 19767

0 18815 2 954 23 30 292 76 0 406 103

1 6 21857 55 46 2756 111 52 4436 5039 410

2 4 9 18660 105 5 2 6 6 207 3

3 6 2 43 18971 1 1733 0 12 3177 373

4 1 0 6 1 18494 5 5 83 265 3229

5 7 2 4 918 0 17211 35 0 1246 282

6 50 10 30 0 60 888 18833 0 360 1

7 1 5 601 324 209 4 0 19817 242 6735

8 9 13 22 620 19 289 6 5 18201 154

9 3 4 6 70 1722 90 2 1060 1266 18667

] False neg. 1367 495 1378 1585 1083 1092 1136 1130 1599 1100

False neg. 6.8% 2.2% 6.9% 7.7% 5.5% 6.0% 5.7% 5.4% 8.0% 5.6%

] False pos. 87 47 1721 2107 4802 3414 182 5602 12208 11290

False pos. 0.00% 0.00% 0.01% 0.01% 0.02% 0.02% 0.00% 0.03% 0.06% 0.06%

Remark: ten(!) independent decisions for each data vector
mean false negative: 5.98%
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Concluding Remarks

Bayes Decision Function

minimizes the classification error in case of mutually exclusive classes

fails completely in case of non-exclusive properties

One-Class Classifier

less precise in case of mutually exclusive classes

clearly preferable in case of non-exclusive properties

applicable both to the non-exclusive and exclusive properties

can be transformed to Bayes decision function by norming
in case of equiprobable mutually exclusive classes

provides a unified approach to recognition of properties
and feature extraction

⇒ assumption of mutually exclusive classes is not suitable to model
biological neural networks References
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EM Algorithm for Structural Mixture Model

structural optimization can be included into EM algorithm

L =
1

|Sω|
∑

x∈Sω

log
[ ∑

m∈Mω

F (x|0)G (x|m,φm)f (m)
]
, F (x|0) =

∏
n∈N

fn(xn|0)

EM Algorithm: (m ∈Mω, n ∈ N , x ∈ Sω)

q(m|x) =
G (x|m,φm)f (m)∑
j∈Mω

G (x|j ,φj)f (j)
,

f
′
(m) =

1

|Sω|
∑

x∈Sω

q(m|x), θ
′

mn =
1∑

x∈Sω
q(m|x)

∑
x∈Sω

xnq(m|x)

structural criterion: Kullback-Leibler I-divergence

γ
′

mn = f
′
(m)

[
θ

′

mn log
θ

′

mn

θ0n
+ (1− θ

′

mn) log
(1− θ′

mn)

(1− θ0n)

]
structural parameter optimization: φ

′

mn = 1 for the r highest values γ
′

mn

Remark. The “structural” EM algorithm converges monotonically. Back
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Component Means of the Estimated Mixtures P(x|ω)

examples of component parameters θmn ∈ 〈0, 1〉 displayed in raster
arrangement (the white fields denote unused variables with φmn = 0)

Back
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Probabilistic Neuron for Identification of Properties

output layer neuron for the property ω :

∆ω(x) =
∑

m∈Mω

q(m|x) log [G (x|m,φm)f (m)] +
∑

m∈Mω

−q(m|x) log q(m|x)

q(m|x) =
G (x|m,φm)f (m)∑
j∈Mω

G (x|j ,φj)f (j)
, H(q(·|x)) =

∑
m∈Mω

−q(m|x) log q(m|x)

∆ω(x) = H(q(·|x)) +
∑

m∈Mω

q(m|x)

[
log f (m) +

∑
n∈N

φmn log

(
fn(xn|m)

fn(xn|0)

)]

hidden layer neuron: (m ∈Mω)

ym(x) =

[
log f (m) +

∑
n∈N

φmn log

(
1− θmn

1− θ0n

)
+ xn log

(
θmn(1− θ0n)

θ0n(1− θmn)

)]

∆ω(x) = H(q(·|x)) +
∑

m∈Mω

q(m|x)ym(x)

Back
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