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Statistical Approach to Pattern Recognition

x = (x1, . . . , xN) ∈ X : N-dimensional binary data vectors

Ω = {ω1, ω2, . . . , ωJ}: finite number of classes

P(x|ω)p(ω), ω ∈ Ω: conditional distributions of classes

Bayes formula: to classify any given x ∈ X uniquely

p(ω|x) =
P(x|ω)p(ω)

P(x)
, P(x) =

∑
ω∈Ω

P(x|ω)p(ω)

PNN solution: approximation of P(x|ω) by mixtures of product components

P(x|ω) =
∑

m∈Mω

wmF (x|m), F (x|m) =
∏
n∈N

fn(xn|m),
∑

m∈Mω

wm = 1.

P(x) =
∑

m∈M
f (m)F (x|m), f (m) = p(ω)wm, M =

⋃
ω∈Ω

Mω

PNN output layer: p(ω|x) =
∑

m∈Mω
f (m|x), f (m|x) = F (x|m)f (m)∑

j∈M F (x|j)f (j)

PNN hidden layer: ym(x) = Tm(x) = log (f (m|x))
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Structural Mixture Model (Grim et al. 1986, 1999, 2002)

STRUCTURAL MODEL: to avoid complete interconnection property

F (x|m) =
∏
n∈N

fn(xn|m)φmn fn(xn|0)1−φmn , φmn ∈ {0, 1}

φmn = 0 : distribution fn(xn|m) is replaced by a fixed “background” fn(xn|0)

P(x|ω) =
∑

m∈Mω

F (x|m)f (m) =
∑

m∈Mω

F (x|0)G (x|m,φm)f (m)

F (x|0) =
∏
n∈N

fn(xn|0), G (x|m,φm) =
∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

G (x|m,φm) ≈ depends on a subset of variables specified by φmn = 1

“background distribution” F (x|0) cancels in the Bayes formula:

p(ω|x) =
P(x|ω)p(ω)

P(x)
=

∑
m∈Mω

G (x|m,φm)f (m)∑
j∈M G (x|j ,φj)f (j)

≈
∑

m∈Mω

G (x|m,φm)f (m)

Remark. Unlike standard subspace approaches the structural mixture model
enables statistically correct Bayesian decision-making.
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Structural Modification of EM Algorithm

STRUCTURAL OPTIMIZATION: can be included into EM algorithm

L =
1

|Sω|
∑

x∈Sω

log
[ ∑

m∈Mω

F (x|0)G (x|m,φm)wm

]
, F (x|0) =

∏
n∈N

fn(xn|0)

EM Algorithm: (m ∈Mω, n ∈ N , x ∈ Sω)

q(m|x) = q(m|x, ω) =
G (x|m,φm)wm∑
j∈Mω

G (x|j ,φj)wj
,

w
′

m =
1

|Sω|
∑
x∈Sω

q(m|x), θ
′

mn =
1∑

x∈Sω
q(m|x)

∑
x∈Sω

xnq(m|x)

structural criterion: (Kullback-Leibler I-divergence)

γ
′

mn = w
′

m

[
θ
′

mn log
θ
′

mn

θ0n
+ (1− θ

′

mn) log
(1− θ

′

mn)

(1− θ0n)

]
structural parameter optimization: φ

′

mn = 1 for the r highest values γ
′

mn

Remark. The “structural” EM algorithm converges monotonically.
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Product Mixture Components as Probabilistic Neuron

probabilistic neuron:

ym = log f (m|x) = log f (m) +
∑
n∈N

φmn log
fn(xn|m)

fn(xn|0)
− log[

∑
j∈M

G (x|j , φj)f (j)]

f (m|x) ≈ probability of “spike” given the input pattern x

f (m) ≈ spontaneous activity of the m-th neuron

log fn(xn|m)
fn(xn|0) ≈ contribution of the input xn to the activation of m-th neuron

log [
∑

j∈M G (x|j , φj)f (j)] ≈ common “norming” term (lateral inhibition)

”synaptical weight”: log
fn(xn|m)

fn(xn|0)
= log

fn(xn|m)

Pn(xn)
= log

f (m|xn)

f (m)

Hebb’s postulate of learning (Hebb, 1949)

“When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic changes
take place in one or both cells such that A’s efficiency as one of the cells
firing B, is increased.”
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Recurrent Use of Bayes Formula∑
m∈M f (m)F (x|m) ≈ implicit “descriptive” decision problem

f (m)F (x|m) ≈ “elementary” properties or situations

f (m|x) ≈ conditional probabilities of situations given x ∈ X

RECURRENT BAYES FORMULA: t = 0, 1, 2, . . .

f (t+1)(m|x) =
G (x|m, φm)f (t)(m|x)∑
j∈M G (x|j , φj)f (t)(j |x)

, f (0)(m|x) = f (m), m ∈M

Convergence (Grim & Vejvalková, 1999)

Recurrent Bayes formula converges independently of the initial values f (m)
to the limit weights f ∗(m|x) = δ(m,m0), m0 = arg maxm{G (x|m, φm)} .

L(t) = log[
∑

m∈M
F (x|0)G (x|m, φm)f (t)(m)], f (t)(m) = f (t)(m|x)

Remark. The recurrent computation of the conditional weights f (t)(m|x)
resembles natural process of cognition as iteratively improving
understanding of input information.
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Recurrent Modification of Input Pattern

L(x) = log P(x) = log[
∑

m∈M
F (x|0)G (x|m, φm)f (m)]

L(x) can be maximized as a function of x by means of EM algorithm:

Q(t)
n = log

θ0n

1− θ0n
+

∑
m∈M

φmnf
(t)(m|x)log

θmn(1− θ0n)

θ0n(1− θmn)

x (t+1)
n =

{
1, Q

(t)
n ≥ 0,

0, Q
(t)
n < 0,

, n ∈ N , t = 0, 1, 2, . . .

Convergence property (Grim et al. 1998)

The sequence of iteratively modified input patterns x(t), t = 0, 1, 2, . . .
converges to a local maximum or saddle point of P(x), the corresponding
sequence of log-likelihood values L(x(t)) is nondecreasing.

Remark. The modified data vectors x(t) are “adapted” according to P(x)
and therefore more probable than the initial data vector x(0). Similarly, human
eye tends to “modify” visual information according to previous experience.
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Numerals From the NIST SD19 database

NIST Special Database SD19: about 400000 handwritten numerals

examples of numerals normalized to 16x16 binary raster

class-means (“mean images”) of training numerals



Statistical Recognition PNN Approach Recurrent PNN Example ConclusionNIST database Recognition of Numerals Basic Features

Recognition of Numerals From the NIST SD19 Database

data split: 200000 training numerals and 200000 testing numerals
(odd data vectors for training, even data vectors for testing)

all numerals normalized to 16x16 binary raster

structural optimization controlled by simple thresholding

initial number of components chosen identically in all classes

random initialization of mixture parameters

CLASSIFICATION ERROR in % obtained by different methods and mixtures

Experiment No. 1 2 3 4 5

Number of Components 10 99 191 389 732
Number of Parameters 2005 22083 41986 94910 156819
Exact Bayes Formula 16.55 6.14 4.89 3.80 3.32
Modified Weights 22.63 9.22 7.50 4.93 5.24
Iterated Weights 16.50 6.17 4.95 3.83 3.39
Adapted Input Vector 16.62 6.15 4.89 3.80 3.32
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Component Means of the Estimated Mixtures P(x|ω)

component parameters θmn ∈ 〈0, 1〉 displayed as grey levels in raster
arrangement (the white fields denote unused variables with φmn = 0)
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Examples of Iteratively Modified Input Patterns

iteratively modified input pattern x converges in several steps to a local
extreme of P(x) which corresponds to a more probable form of the numeral
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Basic Features of Recurrent Bayesian Reasoning

Recurrent Bayes Formula

converges uniquely to asymptotic conditional weights - independently of
the initial component weights

⇒ mixture component weights can be involved into dynamic synaptic
processes without destroying the final correct decision making

resembles natural process of cognition as iteratively improving
understanding of input information

Recurrent Modification of Input Pattern

converges in few steps to a more probable variant of the input pattern

⇒ improves the recognition accuracy

resembles the well known tendency of human eye to modify visual
information according to previous experience
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Concluding Remarks

Basic Features of Probabilistic Neural Networks

design of one-layer-PNN consists in estimating class-conditional
distribution mixtures by means of EM algorithm

PNN can be trained by a sequential version of EM algorithm

multilayer PNN can be designed sequentially layer-by-layer by using
transformed training data

hidden layers of PNN transform the classification problem without
information loss and minimize the entropy of the output space

interconnection structure of multilayer PNN may be incomplete

structure of PNN can be optimized by means of EM algorithm in a
statistically correct way

product mixture components can be interpreted as probabilistic neurons
in neurophysiological terms

probabilistic model of synapse justifies Hebbian principle of learning

independently trained PNN can be combined both horizontally and
vertically
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