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Method of Distribution Mixtures

Information Source:

training data S: independent observations of a random vector identically
distributed (i.i.d.) according to an unknown probability distribution P∗(x)

S = {x (1), x (2), . . . , x (K)}, x (k) = (x
(k)
1 , x

(k)
2 , . . . , x

(k)
N ) ∈ X

Principle of the Method of Mixtures:

approximation of unknown multidimensional multimodal distribution P∗(x)
by means of a linear combination of component distributions F (x |m)

P(x) =
∑
m∈M

wmF (x |m),
∑
m∈M

wm = 1,
∑
x∈X

F (x |m) = 1

(
=

∫
X
F (x |m)dx

)

Application examples:

pattern recognition, image analysis, prediction problems, texture modeling,
statistical models, classification of text documents, . . .
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Mixtures as a “Semiparametric” Model

parametric approach: e.g. assuming multivariate normal density

P(x) =
1√

(2π)N detA
exp{−1

2
(x − c)TA−1(x − c)}, x ∈ X

mean: c =
1

|S|
∑
x∈S

x , covariance matrix: A =
1

|S|
∑
x∈S

(x − c)(x − c)T

nonparametric approach: general kernel estimate Theorem (Parzen, 1962)

P(x) =
1

|S|
∑
y∈S

∏
n∈N

1√
2πσn

exp
{ (xn − yn)2

2σ2
n

}
, x ∈ X

problem: optimal smoothing (choice of the smoothing parameters σn)

Mixtures as a Compromise: Semiparametric Multimodal Model

not so limiting as parametric models

almost as general as nonparametric model, without smoothing

efficient estimation of parameters by EM algorithm
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Example - EM algorithm for mixtures of Gaussian densities

computation of parameter estimates from data: S = {x (1), . . . , x (K)}

F (x |cm,Am) =
1√

(2π)N detAm

exp{−1

2
(x − cm)TA−1

m (x − cm)}, x ∈ IRN

L =
1

|S|
∑
x∈S

logP(x) =
1

|S|
∑
x∈S

log

[ ∑
m∈M

F (x |cm,Am)wm

]

Iteration equations: ≈ to maximize log-likelihood function

E-step: q(m|x) =
wmF (x |cm,Am)∑M
j=1 wjF (x |c j ,Aj)

, x ∈ S, m = 1, 2, . . . ,M

M-Step: w
′

m =
1

|S|
∑
x∈S

q(m|x), c
′

m =
1∑

x∈S q(m|x)

∑
x∈S

x q(m|x)

A
′

m =
1∑

x∈S q(m|x)

∑
x∈S

q(m|x) (x − c
′

m)(x − c
′

m)T

Remark: The number of components has to be given.
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Example: reconstruction of a Gaussian mixture from data

dimension of data: N = 2, number of mixture components: M = 7
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Random sampling from a Gaussian mixture (M=7)

6000 data points (test of the correct implementation of EM algorithm)
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Example of the mixture estimate (M=28)

number of mixture components M = 28 ( 6= 7) (COMPARISON: kernel estimate)
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Original mixture of Gaussian densities (M=7)

dimension of data N = 2, number of mixture components M = 7
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General Version of EM Algorithm

EM algorithm: to maximize log-likelihood function

L =
1

|S|
∑
x∈S

logP(x) =
1

|S|
∑
x∈S

log

[ ∑
m∈M

wmF (x |m)

]
Iteration Equations: (m = 1, 2, . . . ,M, x ∈ S, S = {x (1), . . . , x (K)})

E-step: q(m|x) =
wmF (x |m)∑M
j=1 wjF (x |j)

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

M-Step: F
′
(.|m) = arg max

F (.|m)

{ 1∑
x∈S q(m|x)

∑
x∈S

q(m|x) log F (x |m)
}

for product components: F (x |m) =
∏

n∈N fn(xn|m), N = {1, 2, . . . ,N}

⇒ f
′

n (.|m) = arg max
fn(.|m)

{ 1∑
x∈S q(m|x)

∑
x∈S

q(m|x) log fn(xn|m)
}
, n ∈ N

Remark: Only inequality is sufficient in the M-Step
instead of maximum ⇒ generalized EM (GEM) algorithm.
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Explicit Solution of the M-Step (Grim,1982)

Let F (x |b), x ∈ X be a probability density function and

let b∗ be the maximum-likelihood estimate of the parameter b:

b
∗ = arg max

b

{
L(b)

}
= arg max

b

{ 1

|S|
∑
x∈S

log F (x |b)
}

Further let b∗ be an additive function of the data vectors x ∈ S:

b
∗ =

1

|S|
∑
x∈S

a(x).

Denoting γ(x) = N(x)/|S| the relative frequency of x in S we can write:

L(b) =
∑
x∈X̄

γ(x) log F (x |b), X̄ = {x ∈ X : γ(x) > 0}, (
∑
x∈X̄

γ(x) = 1)

b
∗ =

∑
x∈X̄

γ(x) a(x) = arg max
b

{∑
x∈X̄

γ(x) log F (x |b)
}

Consequence: Weighted likelihood function is maximized by the
weighted analogy of the related m.-l. estimate. Example: Gaussian mixture
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Monotonic Property of EM Algorithm (Schlesinger, 1968)

The sequence of log-likelihood values {L(t)}∞t=0 is non-decreasing:

L(t+1) − L(t) ≥ 0, t = 0, 1, 2, . . .

and, if bounded above, converges to a local or global maximum
(or a saddle-point) of the log-likelihood function:

lim
t→∞

L(t) = L∗ <∞.

The existence of a finite limit L∗ <∞ implies the related necessary
conditions: Proof

lim
t→∞

(L(t+1) − L(t)) = 0 ⇒

⇒ lim
t→∞

|w (t+1)(m)−w (t)(m)| = 0,m ∈M, lim
t→∞

||q(t+1)(·|x)−q(t)(·|x)|| = 0

Remark: The convergence of the sequence {L(t)}∞t=0 does not imply
the convergence of the corresponding parameter estimates!
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Proof of the Monotonic Property of EM Algorithm

Lemma

Kullback-Leibler information divergence I (q(·|x)||q′(·|x)) is non-negative for
any two distributions q(·|x), q

′
(·|x) and it is zero if and only if the two

distributions are identical. Proof

⇒ 1

|S|
∑
x∈S

I (q(·|x)||q
′
(·|x)) =

1

|S|
∑
x∈S

[ ∑
m∈M

q(m|x) log
q(m|x)

q′(m|x)

]
≥ 0

Substitution for q(m|x), q
′
(m|x) from the E-Step implies the inequality:

1

|S|
∑
x∈S

∑
m∈M

q(m|x) log
P
′
(x)

P(x)
− 1

|S|
∑
x∈S

∑
m∈M

q(m|x) log

[
w
′

mF
′
(x |m)

wmF (x |m)

]
≥ 0

where the first term is equal to the increment of the criterion L:

1

|S|
∑
x∈S

∑
m∈M

q(m|x) log
P
′
(x)

P(x)
=

1

|S|
∑
x∈S

log
P
′
(x)

P(x)
= L

′
− L.
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Proof of the Monotonic Property of EM Algorithm

Making substitution from the last equation we obtain:

(*) L
′
−L ≥

∑
m∈M

[
1

|S|
∑
x∈S

q(m|x)

]
log

w
′

m

wm
+
∑
m∈M

1

|S|
∑
x∈S

q(m|x) log
F
′
(x |m)

F (x |m)

and by using substitution from the M-Step

(**) w
′

m =
1

|S|
∑
x∈S

q(m|x), m = 1, 2, . . . ,M

we can write the inequality:

(***)
∑
m∈M

[
1

|S|
∑
x∈S

q(m|x)

]
log

w
′

m

wm
=
∑
m∈M

w
′

m log
w
′

m

wm
≥ 0.

Consequently, the first sum on the right-hand side of the inequality (*) is
non-negative.

Remark: The definition (**) of the weights w
′

m maximizes
the first sum in Eq. (***).
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Proof of the Monotonic Property of EM Algorithm

In view of the M-Step definition, the function F
′
(·|m) maximizes

the left-hand side, i.e. we can write:

∑
m∈M

1

|S|
∑
x∈S

q(m|x) log F
′
(x |m) ≥

∑
m∈M

1

|S|
∑
x∈S

q(m|x) log F (x |m).

The last inequality can be rewritten in the form∑
m∈M

1

|S|
∑
x∈S

q(m|x) log
F
′
(x |m)

F (x |m)
≥ 0,

i.e. the increment of the log-likelihood function L is non-negative:

L
′
− L ≥

∑
m∈M

w
′

m log
w
′

m

wm
+
∑
m∈M

1

|S|
∑
x∈S

q(m|x) log
F
′
(x |m)

F (x |m)
≥ 0

⇒ L
′
≥ L Alternative proof

Remark: Any statistical interpretation of the proof is unnecessary!
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Mixture Identification × Approximating by Mixtures

Problem of mixture identification (e.g. cluster analysis)

GOAL: to identify the true number of components and to
estimate the true mixture parameters

the estimated mixture must be identifiable Definition

PROBLEM: the log-likelihood function has local maxima nearly always
(especially in case of small data sets in high dimensional spaces)

⇒ the resulting local maximum is starting-point dependent

PROBLEM: the mixture estimate is strongly influenced by the chosen
number of components and by the initial parameters

Problem of approximating unknown probability distributions

GOAL: precise approximation of the unknown probability
distribution by using mixture distributions Approximation Problem × MLE

the approximating mixture need not be identifiable

the exact number of components is irrelevant

the approximating mixture can be initialized randomly
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Computational properties of EM Algorithm

real-life approximation problems ⇒

large data sets + large number of components:

in case of large mixtures (M ≈ 101 − 102) the low-weight components
may be neglected (⇒ the exact number of components is irrelevant)

the existence of local log-likelihood maxima of large mixtures is less
relevant because the related maximum values are comparable

⇒ the influence of initial parameters is less relevant, the mixtures can be
initialized randomly

the EM iterations can be stopped e.g. by a relative increment threshold
because of limited influence on the achieved log-likelihood value

a reasonable stopping rule may decrease the risk of overfitting (excessive
adaptation to training data)

the EM algorithm is applicable to weighted data

Remark: The computational properties are data-dependent and
therefore not generally valid.
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From the History of the Mixture Estimation Problem

Computation of m.-l. estimates of mixture parameters by setting partial
derivatives to zero cannot be solved analytically. SOLUTION?

First paper: Pearson (1894): “Contributions to the mathematical
theory of evolution. 1. Dissection of frequency curves.”
Philosophical Trans. of the Royal Society of London 185, 71-110.
Subject: mixture of two univariate Gaussian densities estimated by the
method of moments. (about 80 papers in the years 1895-1965)

efficient estimation of mixtures was enabled only by computers:

Hasselblad (1966), Day (1969), Wolfe (1970): derived
simple iteration scheme by algebraic rearrangement of the likelihood
equations (at present known as EM algorithm) which was converging
and easily applicable to large mixtures in multidimensional spaces

Hosmer (1973): “Iterative m.-l. estimates were proposed by Hasselblad
and subsequently have been looked at by Day, Hosmer and Wolfe.”

Peters a Walker (1978): “... we have observed in experiments that
the convergence is monotone, i.e. that the likelihood function is actually
increased in each iteration, but we have been unable to prove it.”
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From the History of the Mixture Estimation Problem

the first proof of the monotonic property of EM algorithm:

Schlesinger M.I. (1968): “Relation between learning and self learning
in pattern recognition”, Kibernetika, (Kiev), No. 2, 81-88. M.I. Schlesinger

Ajvazjan et al. (1974, in Russian): cite Schlesinger (1968)

Isaenko & Urbach (1976, in Russian): cite Schlesinger (1968)
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From the History of the Mixture Estimation Problem

the standard reference to EM algorithm:

Dempster et al. (1977): “Maximum likelihood from incomplete data
via the EM algorithm.” J. Roy. Statist. Soc., B, Vol. 39, pp.l-38.

Dempster et al. introduced the name EM algorithm and described its
wide application possibilities (main subject: problem of incomplete data)

Google Scholar (2017): 48 500 citations of the above paper
(“all time top 10” in statistics)

: the term “EM algorithm” used in 340 000 papers

: the terms “EM algorithm & mixture” used in 103 000 papers
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From the History of the Mixture Estimation Problem

erroneous proof of the convergence of parameter estimates:
(does not concern the monotonic property of EM algorithm)

Boyles R.A. (1983): “On the convergence of the EM algorithm.” J.
Roy. Statist. Soc., B, Vol. 45, pp. 47-50.

Wu C.F.J. (1983): “On the convergence properties of the EM
algorithm.” Ann. Statist., Vol. 11, pp. 95-103.

Monographs on Mixtures:

Titterington et al. (1985): Statistical analysis of finite mixture
distributions, John Wiley & Sons: Chichester, New York.

McLachlan and Peel (2000): Finite Mixture Models, John Wiley &
Sons, New York, Toronto.
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PRODUCT MIXTURES

mixtures of product components (conditional independence model):

P(x) =
∑
m∈M

wm

∏
n∈N

fn(xn|m), x ∈ X
Examples:
Gaussian mixtures with diagonal covariance matrices (real variables)
mixtures of multivariate Bernoulli distributions (binary variables)

ADVANTAGES:

do not imply the assumption of independence of variables

⇒ do not imply the “naive Bayes” assumption

the mixture parameters can be efficiently estimated by EM algorithm

any discrete distribution can be expressed as product mixture Proof

Gaussian product mixtures approach the asymptotic accuracy of
non-parametric Parzen estimates for M >> 1 Parzen estimates

no risk of ill-conditioned covariance matrices in Gaussian components

marginal distributions: by omitting superfluous terms in the products

any conditional distributions easily computed

product mixtures support the subspace (structural) modification
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EM Estimation of Gaussian Product Mixtures

COMPONENTS: Gaussian densities with diagonal covariance matrices

F (x |µm,σm) =
∏
n∈N

1√
2πσmn

exp
{
− (xn − µmn)2

2σ2
mn

}
, x ∈ X

L =
1

|S|
∑
x∈S

logP(x) =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF (x |µm,σm)]

EM iteration equations: (m ∈M, n ∈ N ) Unnecessary norming of variables

q(m|x) =
wmF (x |µm,σm)∑M
j=1 wjF (x |µj ,σj)

, x ∈ S,

w
′

m =
1

|S|
∑
x∈S

q(m|x), µ
′

mn =
1

w ′m|S|
∑
x∈S

xnq(m|x)

(σ
′

mn)2 =
1

w ′m|S|
∑
x∈S

(xn − µ
′

mn)2q(m|x) =
1

w ′m|S|
∑
x∈S

x2
nq(m|x) − (µ

′

mn)2

no matrix inversion ⇒ no risk of ill-conditioned matrices
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EM Estimation of Discrete Product Mixtures

COMPONENTS: products of univariate discrete distributions

F (x |m) =
∏
n∈N

fn(xn|m), x = (x1, . . . , xN) ∈ X , xn ∈ Xn, |Xn| <∞

L =
1

|S|
∑
x∈S

logP(x) =
1

|S|
∑
x∈S

log

[ ∑
m∈M

wm

∏
n∈N

fn(xn|m)

]
, x ∈ X

EM iteration equations: (x ∈ S, S = {x (1), . . . , x (K)})

q(m|x) =
wmF (x |m)∑M
j=1 wjF (x |j)

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

f
′

n (ξ|m) =
1

w ′m|S|
∑
x∈S

δ(ξ, xn)q(m|x) More details:

Remark 1 Discrete product mixture is not identifiable. Proof

(⇒ problem in cluster analysis × advantage in approximation)

Remark 2 Any discrete distribution is representable as a product mixture.
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EM Estimation of Multivariate Bernoulli Mixtures

COMPONENTS: products of univariate Bernoulli distributions

binary data: numerals on a binary raster, results of biochemical tests ...

x = (x1, x2, . . . , xN) ∈ X , xn ∈ {0, 1}, X = {0, 1}N

F (x |m) = F (x |θm) =
∏
n∈N

fn(xn|θmn) =
∏
n∈N

θxnmn(1− θmn)1−xn

L =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF (x |θm)], S = {x (1), . . . , x (K)}

EM iteration equations:

q(m|x) =
wmF (x |θm)∑M
j=1 wjF (x |θj)

, x ∈ S, m = 1, 2, . . . ,M

w
′

m =
1

|S|
∑
x∈S

q(m|x), θ
′

mn =
1

w ′m|S|
∑
x∈S

xnq(m|x)

Remark: Product of a large number of parameters θmn may underflow.
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Implementation Comments on EM Algorithm

implementation of EM algorithm as a data cycle (for |S| >> 1)∑
x∈S

q(m|x)→ w
′

m,
∑
x∈S

xn q(m|x)→ µ
′

mn, θ
′

mn

basic condition to verify the correct implementation: L
′ ≥ L

relative increment threshold ε to stop iterations:
(L
′ − L)/L < ε, (ε ≈ 10−3 − 10−5)

ε is useful to avoid “overpeaking” in final stages of convergence

EM algorithm suppresses the weights of “superfluous” components
(large number of low-weight components ⇒ to many components M)

global information about overlapping components:

qmax(x) = max
m∈M

{q(m|x)}, q̄max =
1

|S|
∑
x∈S

qmax(x)

in multi-dimensional spaces (N >> 1) the criterion q̄max is
usually high (≈ 0.85÷ 0.99) ⇒ the overlap of components is small

Remark: Correct implementation of EM algorithm can be reliably verified
by re-identification of mixture parameters from large artificial data.
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Implementation of EM Algorithm in High Dimensions

PROBLEM: numerical instability of the E-step

the components F (x |m) may “underflow” at dimensions N ≈ 30− 40

⇒ the “lost” values cannot be “recovered” by norming in Eq. for q(m|x)

⇒ inaccurate evaluation of the conditional weights q(m|x)

SOLUTION:

log[F (x |m)wm] = logwm +
∑
n∈N

log fn(xn|m)

maximum component: logC (x) = maxm{ log[F (x |m)wm] }

NORMING of F (x |m) a P(x) for evaluation of q(m|x):

exp{− logC (x) + logwm +
∑
n∈N

log fn(xn|m)} = C (x)−1F (x |m)wm

q(m|x) =
C (x)−1F (x |m)wm∑M
j=1 C (x)−1F (x |j)wj

=
F (x |m)wm∑M
j=1 F (x |j)wj

Examples of C-pseudocode: Bernoulli Mixture Gaussian Mixture
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Structural Mixture Model (Grim et al. 1986, 1999, 2002)

binary structural parameters: φm = (φm1, . . . , φmN) ∈ {0, 1}N

F (x |m) =
∏
n∈N

fn(xn|m)φmn fn(xn|0)1−φmn ,

fn(xn|0) : fixed “background” distributions, usually fn(xn|0) = P∗n (xn)
φmn = 0 ⇒ fn(xn|m) is replaced by fn(xn|0)

P(x) =
∑
m∈M

F (x |m)wm = F (x |0)
∑
m∈M

G (x |m,φm)wm,

G (x |m,φm) =
∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

, F (x |0) =
∏
n∈N

fn(xn|0) > 0

“the background distribution” F (x |0) reduces in the Bayes formula:

p(ω|x) =
P(x |ω)p(ω)

P(x)
=

∑
m∈Mω

G (x |m,φm)wm∑
j∈M G (x |j ,φj)wj

≈
∑

m∈Mω

G (x |m,φm)wm

MOTIVATION: Local, component-specific feature selection,
“dimensionless” computation, structural neural networks.
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Structural Modification of EM Algorithm

structural optimization can be included into EM algorithm:

L =
1

|S|
∑
x∈S

log
[ ∑
m∈M

F (x |0)G (x |m,φm)wm

]
EM iteration equations: (m ∈M, n ∈ N , x ∈ S)

q(m|x) =
G (x |m,φm)wm∑
j∈M G (x |j ,φj)wj

, w
′

m =
1

|S|
∑
x∈S

q(m|x),

f
′

n (.|m) = arg max
fn(.|m)

{∑
x∈S

q(m|x)

w ′m|S|
log fn(xn|m)

}
structural optimization:

φ
′

mn = 1 for a fixed number R of largest values of the criterion γ
′

mn:

γ
′

mn =
1

|S|
∑
x∈S

q(m|x) log
[ f ′n (xn|m)

fn(xn|0)

]
Proof

Remark: The background distribution F (x |0) can be included into
optimization too (Grim, 1999).
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Structural EM Algorithm - Discrete Mixture

fn(xn|m), xn ∈ Xn, n ∈ N ≈ discrete probability distributions

L =
1

|S|
∑
x∈S

log
[ ∑
m∈M

G (x |m,φm)wm

]
, G (x |m) =

∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

EM iteration equations: (m ∈M, n ∈ N , x ∈ S)

q(m|x) =
G (x |m,φm)wm∑
j∈M G (x |j ,φj)wj

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

f
′

n (ξ|m) =
∑
x∈S

δ(ξ, xn)
q(m|x)

w ′m|S|
, Details

structural optimization: φ
′

mn = 1 for the R largest values γ
′

mn:

γ
′

mn =
∑
x∈S

q(m|x)

w ′m|S|
log
[ f ′n (xn|m)

fn(xn|0)

]
= w

′

m

∑
ξn∈Xn

f
′

n (ξn|m) log
f
′

n (ξn|m)

fn(ξn|0)
Proof

Remark: The last sum is the Kullback-Leibler information divergence.
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Structural EM Algorithm - Gaussian Mixture

Gaussian densities: fn(xn|µmn, σmn) = 1√
2πσmn

exp
{
− (xn−µmn)2

2σ2
mn

}
L =

1

|S|
∑
x∈S

log
[ ∑
m∈M

wm

∏
n∈N

(
fn(xn|µmn, σmn)

fn(xn|µ0n, σ0n)

)φmn ]
,

EM iteration equations: (m ∈M, n ∈ N , x ∈ S)

q(m|x) =
G (x |m,φm)wm∑
j∈M G (x |j ,φj)wj

, w
′

m =
1

|S|
∑
x∈S

q(m|x),

µ
′

mn =
1

w ′m|S|
∑
x∈S

xnq(m|x), (σ
′

mn)2 =
1

w ′m|S|
∑
x∈S

x2
nq(m|x)− (µ

′

mn)2,

structural optimization: φ
′

mn = 1 for the R largest values γ
′

mn :

γ
′

mn =
w
′

m

2

[
(µ
′

mn − µ0n)2

(σ0n)2
+

(σ
′

mn)2

(σ0n)2
− log

(σ
′

mn)2

(σ0n)2
− 1

]
= w

′

mI (f
′

n (·|m), fn(·|0))

Remark: γ
′

mn is the Kullback-Leibler information divergence. Proof
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Properties of Structural Mixture Model

STRUCTURAL MIXTURES ≈ statistically correct subspace approach:

PRINCIPLE: the less informative univariate distributions fn(xn|m)
are replaced by fixed “background” distributions fn(xn|0)

reduces the number of mixture parameter (and components)
⇒ reduces the risk of overpeaking

suppresses the influence of unreliable (less informative) variables

the EM algorithm performs feature selection for each component
independently (it is not necessary to exclude variables globally)

Bayesian decision-making based on structural mixtures is dimension
independent (Grim 2016)

the structural optimization implied by EM algorithm is controlled by the
Kullback-Leibler information divergence

avoids the biologically unnatural connection of probabilistic neurons with
all input variables (Grim et al. 2000)

enables the structural optimization of probabilistic neural networks by
EM algorithm (Grim 2007)
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Modification of EM Algorithm for Incomplete Data

INCOMPLETE DATA: x = (x1,−, x3, x4,−,−, x7, . . . , xN) ∈ X

N (x) = {n ∈ N : variable xn is defined in x}, x ∈ X
Sn = {x ∈ S : n ∈ N (x)}, ≈ vectors x ∈ S with the defined variable xn

Assumption: components in product form ⇒ Easily available marginals

L =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF̄ (x |m)], F̄ (x |m) =
∏

n∈N (x)

fn(xn|m)

EM iteration equations: (m ∈M, n ∈ N , x ∈ S)

q(m|x) =
wmF̄ (x |m)∑M
j=1 wj F̄ (x |j)

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

f
′

n (.|m) = arg max
fn(.|m)

{ 1∑
x∈Sn q(m|x)

∑
x∈Sn

q(m|x) log fn(xn|m)
}

Remark: The likelihood criterion depends on available values only.
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Modification of EM algorithm for Weighted Data

NOTATION: γ(x) > 0 : relative frequency of x in S, (
∑

x∈X γ(x) = 1)

L =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF (x |m)] =
∑
x∈X̄

γ(x) log[
∑
m∈M

wmF (x |m)]

X̄ = {x ∈ X : γ(x) > 0} : the sum can be confined to x ∈ X̄ :

“weighted” EM iteration equations: (m ∈M, n ∈ N , x ∈ X̄ )

q(m|x) =
wmF (x |m)∑
j∈M wjF (x |j)

, F (x |m) =
∏
n∈N

fn(xn|m)

w
′

m =
1

|S|
∑
x∈S

q(m|x) =
∑
x∈X̄

γ(x)q(m|x)

F
′
(.|m) = arg max

F (.|m)

{∑
x∈X̄

γ(x)q(m|x)

w ′m
log F (x |m)

}
Applications: relevance of data, aggregation of data,
discrete data weighted by table values: γ(x) = P∗(x), x ∈ X
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Sequential Decision Scheme (Grim 1986, 2014)

INFORMATION CONTROLLED SEQUENTIAL DECISION-MAKING

Given the observations xD = (xj1 , . . . , xjl ) ∈ XD , D = {j1, . . . , jl} ⊂ N we
have to choose the next most informative variable xn, n /∈ D to maximize the
conditional information IxD

(Xn,Ω) about the classes Ω = {ω1, . . . , ωK}.

SOLUTION: explicit evaluation of the criterion IxD
(Xn,Ω)

IxD
(Xn,Ω) = HxD

(Xn)− HxD
(Xn|Ω), n∗ = arg max

n/∈D
{IxD

(Xn,Ω)}

HxD
(Xn) =

∑
xn∈Xn

−Pn|D(xn|xD) logPn|D(xn|xD), Pn|D(xn|xD) =
PnD(xn, xD)

PD(xD)

HxD
(Xn|Ω) =

∑
ω∈Ω

p(ω|xD)
∑
xn∈Xn

−Pn|Dω(xn|xD , ω) logPn|Dω(xn|xD , ω),

Pn|Dω(xn|xD , ω) = PnD|ω(xn, xD |ω)/PD|ω(xD |ω) =
∑

m∈Mω

Wm(xD , ω)fn(xn|m),

PnD|ω(xn, xD |ω) =
∑
m∈M

wmfn(xn|m, ω)
∏
i∈D

fi (xi |m, ω),
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Feature Selection: the Most Informative Subspace

special case of the sequential decision scheme:

INFORMATION CRITERION for the optimal feature subset

ASSUMPTION: class-conditional product mixtures P(x |ω), ω ∈ Ω

I (XD ,Ω) = H(XD)− H(XD |Ω), D∗ = arg max
D⊂N

{I (XD ,Ω)}

PD|ω(xD |ω) =
∑

m∈Mω

wm

∏
n∈D

fn(xn|m), xD ∈ XD ,

H(XD) =
∑

xD∈XD

−PD(xD) logPD(xD), D = {j1, . . . , jk} ⊂ N , |D| = k

H(XD |Ω) =
∑
ω∈Ω

p(ω)
∑

xD∈XD

−PD|ω(xD |ω) logPD|ω(xD |ω)

optimal subset D ⊂ N : complete search, approximate methods

APPLICATION: informative feature selection for pattern recognition
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PROPERTIES OF PRODUCT MIXTURES

SURVEY: computational properties of product mixtures

efficient estimation of multivariate distribution mixtures (!)

suitable to approximate multi-modal, real-life probability distributions

with increasing number of components the Gaussian mixtures
approach the asymptotic accuracy of Parzen (kernel) estimates

unlike Parzen estimates the product mixtures are optimally
“smoothed” by the efficient EM algorithm

directly available marginal probability distributions (!)

the mixture parameters can be estimated from incomplete data

product components enable the information controlled
sequential decision-making in multi-dimensional spaces

product mixtures can be interpreted as probabilistic neural networks

enable the structural optimization of probabilistic neural networks

provide information criterion for the optimal feature subset Literature
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A1: Asymptotic Properties of Parzen Estimates

Theorem (Parzen, 1962; Cacoullos, 1966)

Let SK be a sequence of K independent observations of an N-dimensional
random vector distributed with the probability density function P∗(x). The
non-parametric density estimate P(x) with the soothing parameter σK

P(x) =
1

K

∑
y∈SK

∏
n∈N

1√
2πσK

exp
{ (xn − yn)2

2σ2
K

}
is asymptotically unbiased in each continuity point of P∗(x), i.e. it holds

lim
K→∞

ESK {P(x)} = P∗(x)

if limK→∞ σK = 0. In addition, if limK→∞ KσN
K =∞, then the unbiased

estimate P(x) is asymptotically consistent in the quadratic mean sense:

lim
K→∞

ESK {[P∗(x)− P(x)]2} = 0.

Back: Compromise Back: Product mixtures



Method of Mixtures EM generally Product mixtures Modification Survey Literature

A2: Optimal Smoothing of Parzen (Kernel) Estimates

Parzen estimate with Gaussian kernel:

P(x) =
1

|S|
∑
y∈S

f (x |y ,σ) =
1

|S|
∑
y∈S

[∏
n∈N

1√
2πσn

exp
{ (xn − yn)2

2σ2
n

}]

optimization by cross-validation (leaving-one-out) method:
≈ to maximize the modified log-likelihood function by EM algorithm:

L(σ) =
∑
x∈S

log

 1

(|S| − 1)

∑
y∈S,y 6=x

∏
n∈N

1√
2πσn

exp
{ (xn − yn)2

2σ2
n

}
q(y |x) =

f (x |y ,σ)∑
u∈S,u 6=x f (x |u,σ)

, y ∈ S

(σ
′

n)2 =
1

|S|
∑
x∈S

∑
y∈S,y 6=x

(xn − yn)2q(y |x)

Remark: Optimal smoothing is crucial in high-dimensional spaces!
Back: Product mixtures Back: Compromise
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“Under-smoothed” Kernel Estimate
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“Over-smoothed” Kernel Estimate
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Optimally Smoothed Kernel Estimate

(general Gaussian kernel) Back: Norm. mixture
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A3: Marginal Distributions of a Product Mixture

easily obtained by omitting superfluous terms in products:

P(x) =
∑
m∈M

wmF (x |m) =
∑
m∈M

wm

∏
n∈N

fn(xn|m), x = (x1, . . . , xN) ∈ X

∑
xi∈Xi

P(x) =
M∑

m=1

wm(
∑
xi∈Xi

fi (xi |m))
∏

n∈N\i

fn(xn|m) =
M∑

m=1

wm

∏
n∈N\i

fn(xn|m)

xC = (xi1 , xi2 , . . . , xik ) ∈ XC , XC = Xi1 × · · · × Xik , C = {i1, . . . , ik} ⊂ N

PC (xC ) =
∑
m∈M

wmFC (xC |m), FC (xC |m) =
∏
n∈C

fn(xn|m)

Pn|C (xn|xC ) =
PnC (xn, xC )

PC (xC )
=
∑
m∈M

wmFC (xC |m)

PC (xC )
fn(xn|m)

Pn|C (xn|xC ) =
∑
m∈M

Wm(xC )fn(xn|m), Wm(xC ) =
wmFC (xC |m)

PC (xC )

Back - Incomplete data Back: Product mixtures
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A4: Solution of the M-Step - Gaussian Mixture

Gaussian Mixture with a General Covariance Matrix:

F (x |cm,Am) =
1√

(2π)N detAm

exp{−1

2
(x − cm)TA−1

m (x − cm)}

P(x) =
∑
m∈M

wmF (x |cm,Am)

implicit form of the M-Step:

(c
′

m,A
′

m) = arg max
(cm,Am)

{∑
x∈S

γ(x) log F (x |cm,Am)
}

explicit solution:

c
′

m =
∑
x∈S

γ(x) x , γ(x) =
q(m|x)∑
y∈S q(m|y)

A
′

m =
∑
x∈S

γ(x) (x − c
′

m)(x − c
′

m)T =
∑
x∈S

γ(x)xxT − c
′

m(c
′

m)T

Back: Gaussian Mixture
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A5: Solution of the M-Step - Discrete Product Mixture

f
′

n (.|m) = arg max
fn(.|m)

{∑
x∈S

q(m|x)

w ′m|S|
log fn(xn|m)

}
, n ∈ N , m ∈M,

∑
ξ∈Xn

δ(ξ, xn) = 1, xn ∈ Xn,

f
′

n (.|m) = arg max
fn(.|m)

{∑
x∈S

( ∑
ξ∈Xn

δ(ξ, xn)
)q(m|x)

w ′m|S|
log fn(xn|m)

}
,

f
′

n (.|m) = arg max
fn(.|m)

{ ∑
ξ∈Xn

∑
x∈S

δ(ξ, xn)
q(m|x)

w ′m|S|
log fn(ξ|m)

}
,

f
′

n (.|m) = arg max
fn(.|m)

{ ∑
ξ∈Xn

(∑
x∈S

δ(ξ, xn)
q(m|x)

w ′m|S|

)
log fn(ξ|m)

}
,

⇒ f
′

n (ξ|m) =
∑
x∈S

δ(ξ, xn)
q(m|x)

w ′m|S|

Back: EM algorithm Back: Structural EM
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A5: Invariance of EM Algorithm Under Linear Transform

EM estimate of a Gaussian mixture is invariant under linear transform

Let the parameters {wm, µmn, σmn,m ∈M, n ∈ N} of a Gaussian product
mixture define a stationary point of EM algorithm, i.e. they satisfy the EM
iteration equations. Further let y = T (x) be a linear transform of the vectors
x ∈ X a of the mixture parameters :

yn = anxn + bn, x ∈ S, w̃m = wm, µ̃mn = anµmn + bn, σ̃mn = anσmn.

Then the transformed parameters {w̃m, µ̃mn, σ̃mn,m ∈M, n ∈ N} also define
a stationary point of EM algorithm in the transformed space Y.

Proof: The following equations can be verified by related substitutions:

F (y |µ̃m, σ̃m) =
1∏

n∈N an
F (x |µm,σm), P̃(y) =

1∏
n∈N an

P(x)

µ̃mn =
1

w̃m|S|
∑
y∈S̃

ynq(m|y), (σ̃mn)2 =
1

w̃m|S|
∑
y∈S̃

(yn − µ̃mn)2q(m|y)

q(m|y) = q(m|x), y = T (x), x ∈ S, m ∈M Back: Gaussian Product Mixture
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A6: Monotonic Property of Structural EM Algorithm

structural mixture is a special case of product mixture model, i.e.

w
′

m =
1

|S|
∑
x∈S

q(m|x), f
′

n (.|m) = arg max
fn(.|m)

{∑
x∈S

q(m|x)

w ′m|S|
log fn(xn|m)

}
It is necessary to prove, that the monotonic property holds for the
optimized structural parameters φmn. We use the inequality :

L
′
− L ≥

∑
m∈M

1

|S|
∑
x∈S

{ ∑
m∈M

q(m|x) log
[F ′(x |m)

F (x |m)

]}
≥ 0

and, making substitution for F
′
(x |m),F (x |m), we obtain:

L
′
− L ≥

∑
m∈M

1

|S|
∑
x∈S

{ ∑
m∈M

q(m|x) log
[G ′(x |m,φ′m)

G (x |m,φm)

]}

L
′
− L ≥

∑
m∈M

1

|S|
∑
x∈S

{ ∑
m∈M

q(m|x) log
[ f ′n (xn|m)

fn(xn|0)

]φ′mn
[ fn(xn|m)

fn(xn|0)

]φmn
}



Method of Mixtures EM generally Product mixtures Modification Survey Literature

Monotonic Property of Structural EM Algorithm

The last inequality can be rewritten in the form:

(∗) L
′
− L ≥

∑
m∈M

∑
n∈N

(φ
′

mn − φmn)γ
′

mn +
∑
m∈M

∑
n∈N

φmn

|S|
q(m|x) log

f
′

n (xn|m)

fn(xn|m)

where γ
′

mn is the structural optimization criterion:

γ
′

mn =
1

|S|
∑
x∈S

q(m|x) log
f
′

n (xn|m)

fn(xn|0)
, n ∈ N ,m ∈M

In view of the above definition of f
′

n (.|m) we can write for arbitrary fn(·|m) :

1

|S|
∑
x∈S

q(m|x) log f
′

n (xn|m) ≥ 1

|S|
∑
x∈S

q(m|x) log fn(xn|m)

Therefore, the last sum in the inequality (∗) is non-negative and, for the
same reason, we have γ

′

mn ≥ 0 for all n ∈ N ,m ∈M;

By setting φ
′

mn = 1 for the R highest values γ
′

mn, we obtain

L
′
− L ≥

∑
m∈M

∑
n∈N

(φ
′

mn − φmn) γ
′

mn ≥ 0 q.e.d. Back: Structural EM
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Interpretation of Structural Criterion - Discrete Mixture

fn(xn|m), xn ∈ Xn, n ∈ N ≈ discrete probability distribution

γ
′

mn =
1

|S|
∑
x∈S

q(m|x) log
f
′

n (xn|m)

fn(xn|0)
, n ∈ N ,m ∈M

∑
ξ∈Xn

δ(ξ, xn) = 1, xn ∈ Xn,

γ
′

mn =
1

|S|
∑
x∈S

q(m|x)
[ ∑
ξ∈Xn

δ(ξ, xn)
]

log
f
′

n (xn|m)

fn(xn|0)
,

γ
′

mn =
1

|S|
∑
ξ∈Xn

[∑
x∈S

δ(ξ, xn)q(m|x)
]

log
f
′

n (ξ|m)

fn(ξ|0)
,

γ
′

mn = w
′

m

∑
ξ∈Xn

f
′

n (ξ|m) log
f
′

n (ξ|m)

fn(ξ|0)
= w

′

mI (f
′

n (·|m), fn(·|0)),

γ
′

mn ≈ Kullback-Leibler information divergence Back: Structural EM
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Interpretation of Structural Criterion - Gaussian Mixture

Gaussian densities: fn(xn|µmn, σmn) = 1√
2πσmn

exp
{
− (xn−µmn)2

2σ2
mn

}
γ
′

mn =
1

|S|
∑
x∈S

q(m|x) log
fn(xn|µ

′

mn, σ
′

mn)

fn(xn|µ0mn, σ0n)
, n ∈ N ,m ∈M,

γ
′

mn = w
′

m

∑
x∈S

q(m|x)

w ′m|S|

[
− log

σ
′

mn

σ0n
− (xn − µ

′

mn)2

2(σ′mn)2
+

(xn − µ0n)2

2(σ0n)2

]
,

γ
′

mn =
w
′

m

2

[
(µ
′

mn − µ0n)2

(σ0n)2
+

(σ
′

mn)2

(σ0n)2
− 1− log

(σ
′

mn)2

(σ0n)2

]
=

it is easily verified: Back: Structural EM

= w
′

m

∫
Xn

fn(xn|µ
′

mn, σ
′

mn) log
fn(xn|µ

′

mn, σ
′

mn)

fn(xn|µ0n, σ0n)
dxn = w

′

mI (f
′

n (·|m), fn(·|0))

⇒ γ
′

mn ≈ “continuous” Kullback-Leibler information divergence
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A7: Non-Identifiability of Discrete Product Mixtures

Definition of Identifiability of Mixtures (Teicher, 1963)

The class of Mixtures P = {P(x ,θ) : θ ∈ Θ} is identifiable, if the parameters

θ,θ
′
∈ Θ of any two equivalent mixtures

P(x ,θ) = P(x ,θ
′
), ∀ x ∈ X

may differ only by the order of components. Back: identification x aproximation

Theorem ( Grim, 2001; cf. Teicher, 1963, 1968; Gyllenberg et al., 1994;)

Arbitrary discrete product mixture (xn ∈ Xn, |Xn| <∞)

P(x) =
∑
m∈M

wmF (x |m) =
∑
m∈M

wm

∏
n∈N

fn(xn|m)

has infinitely many equivalent forms with different parameters, if at least one
of the univariate component distributions fi (xi |m) is nonsingular, i.e. satisfies
the condition

0 < fi (xi |m) < 1, for some xi ∈ Xi . Back: Discrete mixture
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Proof: Non-Identifiability of Discrete Product Mixtures

Proof: Let 0 < fi (xi |m) < 1 for some i ∈ N , xi ∈ Xi and m ∈M. Then, for
any 0 < α < 1, β = 1− α, we can construct two different probability
distributions f

′

i (·|m), f
′′

i (·|m) in such a way that the distribution fi (·|m)

represents an internal point of the abscise 〈f ′i (·|m), f
′′

i (·|m)〉 in the
|Xi |-dimensional space in the sense of the following condition:

(*) fi (ξ|m) = αf
′

i (ξ|m) + βf
′′

i (ξ|m), ξ ∈ Xi .

Consequently, the nonsingular probability distribution fi (·|m) can be
expressed as a convex combination of two distributions f

′

i (·|m), f
′′

i (·|m) in
infinitely many ways. By using the above substitution (*) we can write

(**) wmF (x |m) = w
′

mF
′
(x |m) + w

′′

mF
′′

(x |m),

where
w
′

m = αwm, w
′′

m = βwm, (w
′

m + w
′′

m = wm),

F
′
(x |m) = f

′
(xi |m)

∏
n∈N ,n 6=i

fn(xn|m), F
′′

(x |m) = f
′′

(xi |m)
∏

n∈N ,n 6=i

fn(xn|m)

Finally, making substitution (**) for wmF (x |m), we obtain a non-trivially
different equivalent of the original distribution P(x), q.e.d. Back: EM algorithm
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A8: Alternative Proof of the EM Monotonic Property

Kullback-Leibler information divergence is non-negative, i.e. :

I (q(·|x), q
′
(·|x)) =

∑
m∈M

q(m|x) log
q(m|x)

q′(m|x)
≥ 0, Proof

The following proof follows the original idea of Schlesinger. Using notation

L =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF (x |m)], q(m|x) =
wmF (x |m)∑M
j=1 wjF (x |j)

We can express the log-likelihood functions L and L
′

equivalently by means of
the conditional weights q(m|x), q

′
(m|x):

L =
1

|S|
∑
x∈S

{ ∑
m∈M

q(m|x) log[wmF (x |m)]−
∑
m∈M

q(m|x) log q(m|x)
}

L
′

=
1

|S|
∑
x∈S

{ ∑
m∈M

q(m|x) log[w
′

mF
′
(x |m)] −

∑
m∈M

q(m|x) log q
′
(m|x)

}
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Alternative Proof of the EM Monotonic Property

Using the above equations we can express the increment L
′ − L as follows:

L
′
−L =

1

|S|
∑
x∈S

{ ∑
m∈M

q(m|x) log
[w ′mF ′(x |m)

wmF (x |m)

]
+
∑
m∈M

q(m|x) log
q(m|x)

q′(m|x)

}
where the second sum on the right-hand side is the non-negative
Kullback-Leibler divergence:

L
′
− L =

1

|S|
∑
x∈S

{ ∑
m∈M

q(m|x) log
[w ′mF ′(x |m)

wmF (x |m)

]
+ I (q(·|x), q

′
(·|x))

}
and therefore, we can write the inequality:

L
′
− L ≥ 1

|S|
∑
x∈S

{ ∑
m∈M

q(m|x) log
[w ′mF ′(x |m)

wmF (x |m)

]}
L
′
− L ≥

∑
m∈M

[ 1

|S|
∑
x∈S

q(m|x)
]

log
w
′

m

wm
+

1

|S|
∑
m∈M

∑
x∈S

q(m|x) log
F
′
(x |m)

F (x |m)
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Alternative Proof of the EM Monotonic Property

Making substitution for w
′

m from the M-Step we obtain the inequality∑
m∈M

[ 1

|S|
∑
x∈S

q(m|x)
]

log
w
′

m

wm
=
∑
m∈M

w
′

m log
w
′

m

wm
≥ 0

Further, in view of the M-Step definition

F
′
(.|m) = arg max

F (.|m)

{∑
x∈S

q(m|x)

w ′m|S|
log F (x |m)

}
we can write for any component F (x |m) the inequality:

(∗)
∑
x∈S

q(m|x) log F
′
(x |m) ≥

∑
x∈S

q(m|x) log F (x |m), m ∈M

The monotonic property of EM algorithm follows from the above inequalities:

L
′
− L ≥

∑
m∈M

w
′

m log
w
′

m

wm
+

1

|S|
∑
m∈M

∑
x∈S

q(m|x) log
F
′
(x |m)

F (x |m)
≥ 0

Remark: The M-Step definition is redundantly strong, the new parameters
need to satisfy only the inequalities (*) ⇒ GEM algorithm Back
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A9: Monotonic Property of EM Algorithm - Implications

Nondecreasing and above bounded sequence {L(t)}∞t=0 has a finite limit
L∗ <∞ and therefore the following necessary condition is satisfied:

lim
t→∞

L(t) = L∗ <∞ ⇒ lim
t→∞

(L(t+1) − L(t)) = 0

Analogous conditions hold for the sequences {w (t)(m)}∞t=0 and

{q(t)(·|x)}∞t=0,m ∈M, too:

lim
t→∞

||w (t+1)(m)− w (t)(m)|| = 0, lim
t→∞

||q(t+1)(m|x)− q(t)(m|x)|| = 0.

The last limits follow from the inequality

L(t+1) − L(t) ≥ I (w (t+1)(·)||w (t)(·)) +
1

|S|
∑
x∈S

I (q(t)(·|x)||q(t+1)(·|x))

and from the following general inequality (cf. Kullback (1966)): Back

∑
x∈X

P∗(x) log
P∗(x)

P(x)
≥ 1

4

(∑
x∈X
|P∗(x)− P(x)|

)2

≥ 1

4
‖P∗(·)− P(·)‖2



Method of Mixtures EM generally Product mixtures Modification Survey Literature

A10: M.-L. Estimates versus Approximation Problems

Lemma

Maximum-likelihood estimate asymptotically minimizes the upper bound of
the Euklidean distance between the true discrete distribution P∗(·) and its
approximating estimate P(·).

Proof: Asymptotically, for |S| → ∞, we can write

lim
|S|→∞

1

|S|
∑
x∈S

logP(x) = lim
|S|→∞

∑
x∈S

γ(x) logP(x) =
∑
x∈X

P∗(x) logP(x)

where γ(x) ≥ 0 is the relative frequency of the discrete vector x in the i.i.d.
sequence S and P∗ is the true probability distribution. The assertion follows
from the inequality (cf. Kullback, 1966):∑

x∈X
P∗(x) log

P∗(x)

P(x)
≥ 1

4

(∑
x∈X
|P∗(x)− P(x)|

)2

≥ 1

4
‖P∗(·)− P(·)‖2

Remark: The m.-l. estimate P(·) is justified as approximation of P∗(·).
Back
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A11: Kullback-Leibler Divergence is Non-Negative

Theorem (cf. e.g. Vajda, 1992)

Any two discrete probability distributions {q1, q2, . . . , qM}, {q
′

1, q
′

2, . . . , q
′

M}
satisfy the following inequality

I (q‖ q
′
) =

∑
m∈M

qm log
qm
q′m
≥ 0

where the equality holds only if q
′

m = qm, for all m ∈M.

Proof: Without any loss of generality we can assume qm > 0 for all m ∈M
(since 0 log 0 = 0 asymptotically). By Jensens inequality we have:∑

m∈M
qm log

q
′

m

qm
≤ log

( ∑
m∈M

qm
q
′

m

qm

)
= log

( ∑
m∈M

q
′

m

)
= log 1 = 0,

where the equality occurs only if q
′

1/q1 = · · · = q
′

M/qM , q.e.d.

Consequence: The following left-hand sum is maximized by q
′

= q:∑
m∈M

qm log q
′

m ≤
∑
m∈M

qm log qm Back - Proof Back (Alternative Proof) Back (M-Step)
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A12: Universality of Discrete Product Mixtures

Lemma (see e.g. Grim, 2006)

Let the table values p(k), k = 1, . . . ,K , K = |X | define a probability
distribution P(x) on a discrete space X :

P(x (k)) = p(k), x (k) ∈ X , k = 1, . . . ,K , X = ∪Kk=1{x (k)}

Then the discrete probability distribution P(x) can be expressed as a product
distribution mixture by using δ-functions in the product components:

P(x) =
K∑

k=1

wkF (x |k) =
K∑

k=1

p(k)
∏
n∈N

δ(xn, x
(k)
n ), x ∈ X .

Proof: The products of δ-functions in the components uniquely define the
points x (k) ∈ X corresponding to the respective probabilistic table values p(k):

F (x |k) =
∏
n∈N

δ(xn, x
(k)
n ), wk = p(k), k = 1, . . . ,K .

Remark: The proof has only formal meaning, the mixture approximation
based on EM algorithm is numerically more efficient. Back - (“representable”)

Back - Advantages
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A13: EM algorithm for Multivariate Bernoulli Mixtures

example of EM algorithm: multivariate Bernoulli mixture

Back
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A14: EM algorithm for Gaussian Product Mixtures

example of EM algorithm: multivariate Gaussian product mixture

Remark: Possible solution of the “underflow” problem. Back
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Prof. M.I. Schlesinger with his wife

At Karľstejn castle during his visit in Prague in 1995. Back Back - Literature
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Grim J., Somol P., Novovičová J., Pudil P. and Ferri F. (1998b): Initializing
normal mixture of densities. In Proc. 14th Int. Conf. on Pattern Recognition
ICPR’98, A.K. Jain, S. Venkatesh, B.C. Lovell (Eds.), pp. 886-890, IEEE
Computer Society: Los Alamitos, California, 1998

Grim J. (1999): Information approach to structural optimization of
probabilistic neural networks. In Proceedings of the 4th System Science
European Congress, L. Ferrer et al. (Eds.), (pp: 527-540), Valencia: Sociedad
Espanola de Sistemas Generales, 1999.

Grim J. (2000): Self-organizing maps and probabilistic neural networks. Neural

Network World, 3(10): 407-415. Paper Award Back



Method of Mixtures EM generally Product mixtures Modification Survey Literature

Literature 5/12

Grim J., Kittler J., Pudil P. and Somol P. (2000): Combining multiple
classifiers in probabilistic neural networks, In Multiple Classifier Systems, Eds.
Kittler J., Roli F., Springer, 2000, pp. 157 - 166.

Grim J., Pudil P. and Somol P. (2000): Recognition of handwritten numerals
by structural probabilistic neural networks. In: Proceedings of the Second ICSC
Symposium on Neural Computation, Berlin, 2000. (Bothe H., Rojas R. eds.).
ICSC, Wetaskiwin, 2000, pp 528-534. Paper Award

Grim J., Kittler J., Pudil P. and Somol P. (2001): Information analysis of
multiple classifier fusion. In: Multiple Classifier Systems 2001, Kittler J., Roli
F., (Eds.), Lecture Notes in computer Science, Vol. 2096, Springer-Verlag,
Berlin, Heidelberg, New York 2001, pp. 168 - 177.
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Report No. 2019. ÚTIA AV ČR, Praha 2001, 13 pp. 23

Grim J., Kittler J., Pudil P. and Somol P. (2002): Multiple classifier fusion in
probabilistic neural networks. Pattern Analysis & Applications Vol. 5, No. 7,
pp. 221-233.

Grim J. and Haindl M. (2003): Texture Modelling by Discrete Distribution
Mixtures. Computational Statistics and Data Analysis, 3-4 41, pp. 603-615.

Grim J., Just P. and Pudil P. (2003): Strictly modular probabilistic neural
networks for pattern recognition. Neural Network World, Vol. 13 , No. 6, pp.
599-615.

Grim J., Somol P., Pudil P. and Just P. (2003): Probabilistic neural network
playing a simple game. In Artificial Neural Networks in Pattern Recognition.
(Marinai S., Gori M. Eds.). University of Florence, Florence 2003, pp. 132-138.

Back



Method of Mixtures EM generally Product mixtures Modification Survey Literature

Literature 7/12

Grim J., Hora J. and Pudil P. (2004): Interaktivńı reprodukce výsledk̊u sč́ıtáńı
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