1. * I. Seidlerová, Jan Seidler: Jáchymover Uranerz und Radioaktivitaetsforschung um die Wende des 19./20. Jahrhunderts. Universitaetsverlag Chemnitz, Chemnitz 2010. Download |
|
2. * I. Seidlerová, Jan Seidler: Jáchymovská uranová ruda a výzkum radioaktivity na přelomu 19. a 20. století. Práce z dějin techniky a přírodních věd 16. Národní technické muzeum, Praha 2007. |
1. * Martin Ondreját, Jan Seidler: An elementary prof of the generalized Itô formula. Mathematica Slovaca 75:1 (2025), 205-214. Walter de Gruyter. Download |
|
2. * Jan Seidler, O. Týbl: Stochastic approximation procedures for Lévy-driven SDEs. Journal of Optimization Theory and Applications 197:2 (2023), 817-837. Springer. Download |
|
3. * Martin Ondreját, Jan Seidler: A note on weak solutions to stochastic differential equations. Kybernetika 54:5 (2018), 888-907. Ústav teorie informace a automatizace AV ČR, v. v. i.. Download |
|
4. * Jan Seidler, F. Žák: A note on continuous-time stochastic approximation in infinite dimensions. Electronic Communications in Probability 22. Download |
|
5. * Z. Brzezniak, Martin Ondreját, Jan Seidler: Invariant measures for stochastic nonlinear beam and wave equations. Journal of Differential Equations 260:5 (2016), 4157-4179. Elsevier. Download |
|
6. * Martina Hofmanová, Jan Seidler: On weak solutions of stochastic differential equations II. Stochastic Analysis and Applications 31:4 (2013), 663-670. Taylor & Francis. Download |
|
7. * Martin Ondreját, Jan Seidler: On existence of progressively measurable modifications. Electronic Communications in Probability 18:20 (2013), 1-6. Download |
|
8. * Martina Hofmanová, Jan Seidler: On weak solutions of stochastic differential equations. Stochastic Analysis and Applications 30:1 (2012), 100-121. Taylor & Francis. Download |
|
9. * Jan Seidler: Exponential estimates for stochastic convolutions in 2-smooth Banach spaces. Electronic Journal of Probability 15:50 (2010), 1556-1573. Institute of Mathematical Statistics. Download |
|
10. * E. Hausenblas, Jan Seidler: Stochastic convolutions driven by martingales: maximal inequalities and exponential integrability. Stochastic Analysis and Applications 26:1 (2008), 98-119. Taylor & Francis. |
1. * M. Hofmanová, Jan Seidler: On weak solutions of stochastic differential equations. Research Report No. 2282. ÚTIA Av ČR, v.v.i, Praha 2010. Download |
|
2. * Jan Seidler: Vybrané kapitoly ze stochastické analysy. Research Report 2270. UTIA AV ČR, v.v.i, Praha 2009. Download |