Image Retrieval

Query by Pictorial Example


Abstract: 
Appearance of real scenes is highly dependent on actual conditions as illumination and viewpoint, which significantly complicates automatic analysis of images of such scenes. In this thesis, we introduce novel textural features, which are suitable for robust recognition of natural and artificial materials (textures) present in real scenes. These features are based on efficient modelling of spatial relations by a type of Markov Random Field (MRF) model and we proved that they are invariant to illumination colour, cast shadows, and texture rotation. Moreover, the features are robust to illumination direction and degradation by Gaussian noise, they are also related to human perception of textures.

Image Retrieval Measures Based on Illumination Invariant Textural MRF Features


Abstract: 
Content-based image retrieval (CBIR) systems, target database images using feature similarities with respect to the query. We introduce fast and robust image retrieval measures that utilise novel illumination invariant features extracted from three different Markov random field (MRF) based texture representations. These measures allow retrieving images with similar scenes comprising colour-textured objects viewed with different illumination brightness or spectrum. The proposed illumination insensitive measures are compared favourably with the most frequently used features like the Local Binary Patterns, steerable pyramid and Gabor textural features, respectively. The superiority of these new illumination invariant measures and their robustness to added noise are empirically demonstrated in the illumination invariant recognition of textures from the Outex database.
Syndicate content