Ústav teorie informace a automatizace

Jste zde

Bibliografie

GAP201/10/0752

  1. Brzezniak Z., Goldys B., Ondreját MartinStochastic Geometric Partial Differential Equations , New Trends In Stochastic Analysis And Related Topics - A Volume in Honour of Professor K D Elworthy, p. 1-32 , Eds: Zhao Huaizhong, Truman Aubrey [2011] Download

  1. Hofmanová MartinaA Bhatnagar-Gross-Krook approximation to stochastic scalar conservation laws , Annales de L Institut Henri Poincare-Probabilites Et Statistiques vol.51, 4 (2015), p. 1500-1528 [2015] Download DOI: 10.1214/14-AIHP610
  2. Sturm A., Swart Jan M.A particle system with cooperative branching and coalescence , Annals of Applied Probability vol.25, 3 (2015), p. 1616-1649 [2015] Download DOI: 10.1214/14-AAP1032
  3. Hofmanová MartinaDegenerate parabolic stochastic partial differential equations , Stochastic Processes and their Applications vol.123, 12 (2013), p. 4294-4336 [2013] Download DOI: 10.1016/j.spa.2013.06.015
  4. Hofmanová Martina, Seidler JanOn weak solutions of stochastic differential equations II , Stochastic Analysis and Applications vol.31, 4 (2013), p. 663-670 [2013] Download DOI: 10.1080/07362994.2012.628916
  5. Hofmanová MartinaStrong solutions of semilinear stochastic partial differential equations , Nodea-Nonlinear Differential Equations and Applications vol.20, 3 (2013), p. 757-778 [2013] Download DOI: 10.1007/s00030-012-0178-x
  6. Swart Jan M.Noninvadability implies noncoexistence for a class of cancellative systems , Electronic Communications in Probability vol.18, 38 (2013), p. 1-12 [2013] Download DOI: 10.1214/ECP.v18-2471
  7. Ondreját Martin, Seidler JanOn existence of progressively measurable modifications , Electronic Communications in Probability vol.18, 20 (2013), p. 1-6 [2013] Download DOI: 10.1214/ECP.v18-2548
  8. Athreya S. R., Swart Jan M.Systems of branching, annihilating, and coalescing particles , Electronic Journal of Probability vol.17, 80 (2012), p. 1-32 [2012] Download DOI: 10.1214/EJP.v17-2003
  9. Hofmanová Martina, Seidler JanOn weak solutions of stochastic differential equations , Stochastic Analysis and Applications vol.30, 1 (2012), p. 100-121 [2012] Download DOI: 10.1080/07362994.2012.628916
  10. Ondreját MartinStochastic nonlinear wave equations in local Sobolev spaces , Electronic Journal of Probability vol.15, 33 (2010), p. 1041-1091 [2010] Download DOI: 10.1214/EJP.v15-789

  1. Brzezniak Z., Ondreját MartinStochastic Geometric Wave Equations , Stochastic Analysis: A Series of Lectures, p. 157-188, Stochastic analysis and applications at the Centre Interfacultaire Bernoulli, Ecole Polytechnique Fédérale de Lausanne, (Lausanne, CH, 09.01.2012-29.6.2012) [2015] Download DOI: 10.1007/978-3-0348-0909-2_6
  2. Hofmanová MartinaDegenerate parabolic stochastic partial differential equations, ÚTIA AV ČR, v.v.i, (Praha 2012) Research Report 2320 [2012] Download
  3. Hofmanová M., Seidler JanOn weak solutions of stochastic differential equations, ÚTIA Av ČR, v.v.i, (Praha 2010) Research Report No. 2282 [2010] Download
07.01.2019 - 08:39