Bayesian AR model with Laplace innovations. Results and further proposals.

Jan Šindelář

Department of Adaptive Systems, UTIA Academy of Sciences of the Czech Republic

Department of Probability and Mathematical Statistics, Charles University

e-mail: jenik.sindelar@gmail.com

4 D N 4 B N 4 B N 4 B

Modelling time series

$$Y = (Y_1, Y_2, \dots, Y_T) \tag{1}$$

Assumptions:

- All quantities have density.
- Relation between data is described by model f(Y_t|Θ, F_{t-1}) and time-independent parameters Θ

$$f(Y_t|\Theta, \mathcal{F}_{t-1}) \Leftarrow Y_{t+1} = \Theta \Phi_t + \Sigma W_{t+1}$$
(2)

• Prior distribution $f(\Theta|\mathcal{F}_0)$ describes beliefs - conjugate form.

In a model with constant parameters, we use Bayesian data update

$$f(\Theta|Y_t, \mathcal{F}_{t-1}) = \frac{f(Y_t|\Theta, \mathcal{F}_{t-1})f(\Theta|\mathcal{F}_{t-1})}{\int_{\Omega} f(Y_t|\Theta, \mathcal{F}_{t-1})f(\Theta|\mathcal{F}_{t-1})d\Theta}$$
(3)

In a model with Gaussian innovations and GiW (NiG) prior the estimation has two important properties

 Exponential form of density – transforms multiplication into summation of exponents

• Quadratic (polynomial) form in the exponent conserves form when summed with other quadratic form (polynomial of same order)

in a model with Laplace innovations and conjugate prior the first property holds, while the second one fails

< 日 > < 同 > < 回 > < 回 > < 回 > <

In a model with constant parameters, we use Bayesian data update

$$f(\Theta|Y_t, \mathcal{F}_{t-1}) = \frac{f(Y_t|\Theta, \mathcal{F}_{t-1})f(\Theta|\mathcal{F}_{t-1})}{\int_{\Omega} f(Y_t|\Theta, \mathcal{F}_{t-1})f(\Theta|\mathcal{F}_{t-1})d\Theta}$$
(3)

In a model with Gaussian innovations and GiW (NiG) prior the estimation has two important properties

- Exponential form of density transforms multiplication into summation of exponents
- Quadratic (polynomial) form in the exponent conserves form when summed with other quadratic form (polynomial of same order)

in a model with Laplace innovations and conjugate prior the first property holds, while the second one fails

イロト 不得 トイヨト イヨト

In a model with constant parameters, we use Bayesian data update

$$f(\Theta|Y_t, \mathcal{F}_{t-1}) = \frac{f(Y_t|\Theta, \mathcal{F}_{t-1})f(\Theta|\mathcal{F}_{t-1})}{\int_{\Omega} f(Y_t|\Theta, \mathcal{F}_{t-1})f(\Theta|\mathcal{F}_{t-1})d\Theta}$$
(3)

In a model with Gaussian innovations and GiW (NiG) prior the estimation has two important properties

- Exponential form of density transforms multiplication into summation of exponents
- Quadratic (polynomial) form in the exponent conserves form when summed with other quadratic form (polynomial of same order)

in a model with Laplace innovations and conjugate prior the first property holds, while the second one fails

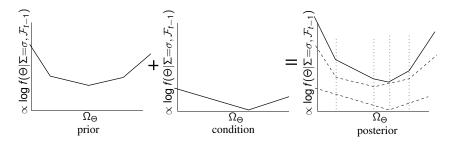


Figure: The principal of update of logarithmized conditional probability density of parameters $f(\Theta|\Sigma, \mathcal{F}_{t-1})$ in a model with Laplace noise via Bayes rule in one dimension. The logarithm transforms multiplication into addition.

and Metropolis-Hastings or

$$J_{t} = \sum_{P_{j} \in \mathcal{C}} \frac{\operatorname{vol}(P_{j}) \Gamma(\nu_{t} - n - 1)}{2^{\nu_{t}} n!} \sum_{k=1}^{n+1} \frac{1}{H_{k}^{\nu_{t} - n - 1}} \prod_{l=1, k \neq l}^{n+1} \frac{1}{H_{l} - H_{k}}$$
(4)

where H_k is value of exponent at point $P_k^0 \in C$.

TABLE I

EMPIRICAL VARIANCES OF SOME ALTERNATIVE LOCATION ESTIMATORS^a

(Sample Size 20)

		Di				
Estimators	Normal	10% 3 <i>a</i> ^b	10% 10σ ^c	Laplace	Cauchy	
Mean	1.00	1.88	11.54	2.10	12,548.0	Gauss
10% trimmed mean	1.06	1.31	1.46	1.60	7.3	
25% trimmed mean	1.20	1.41	1.47	1.33	3.1	
Median	1.50	1.70	1.80	1.37	2.9	Laplace
Gastwirth ^a	1.23	1.45	1.51	1.35	3.1	
Trimean ^e	1.15	1.37	1.48	1.43	3.9	

^a Abstracted from Exhibit 5 in Andrews, et al. [3]. ^b Gaussian Mixture: $.9\Phi(1)+.1\Phi(3)$. ^c Gaussian Mixture: $.9\Phi(1)+.1\Phi(10)$. ^d $\beta = .3\beta^{er}(1/3)+.4\beta^{e}(1/2)+.3\beta^{e}(2/3)$, where $\beta^{*}(\theta)$ is the θ th sample quantile. ^e $\beta = 1/4\beta^{e}(1/4)+1/2\beta^{e}(1/2)+1/4\beta^{e}(3/4)$.

э

イロト イポト イヨト イヨト

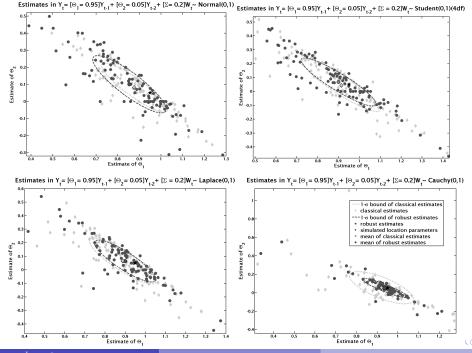


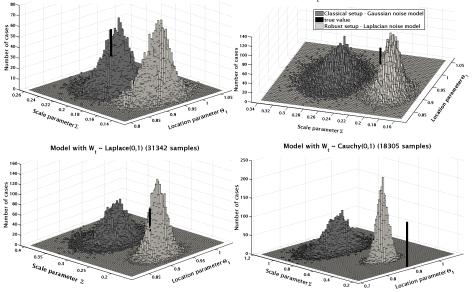
Table: Descriptive statistics of maximum likelihood estimates of location parameters in model $y_t = (\alpha_1 = 0.95)y_{t-1} + (\alpha_2 = 0.05)y_{t-2} + 0.2e_t$ for different noises and two expected models.

model\real		<i>N</i> (0, 1)	<i>t</i> ₄ (0, 1)			
Inodel (real	mean $(\hat{\alpha_1}, \hat{\alpha_2})$	$cov(\hat{\alpha}_1, \hat{\alpha}_2)$	mean $(\hat{\alpha}_1, \hat{\alpha}_2)$	$\operatorname{cov}(\hat{\alpha}_1,\hat{\alpha}_2)$		
Gaussian	(.8771)	(.0229 –.0196)	(.9136)	(.03500322)		
	(.0820 /	(−.0196 .0208)	.0448	│		
Laplacian	(.8535)	(.02850247)	(.8988)	(.03210281)		
	(.1011)	(−.0247 .0281)	(.0682 /	<u> </u>		

model\real		<i>L</i> (0, 1)	$\mathcal{C}(0,1)$			
model\rear	mean $(\hat{\alpha_1}, \hat{\alpha_2})$	$cov(\hat{\alpha}_1, \hat{\alpha}_2)$	$mean(\hat{\alpha}_1, \hat{\alpha}_2)$	$\operatorname{cov}(\hat{\alpha}_1, \hat{\alpha}_2)$		
Gaussian	(.8876)	(.0275 –.0247)	(.9207)	(.02360193)		
	.0661 /	(−.0247 .0290)	(.0550 <i>)</i>	│		
Laplacian	(.8998)	(.02320205)	(.9354)	(.01210106)		
	(.0652 /	(−.0205 .0239)	(.0532)	(−.0106 .0110)		

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model with W, ~ Student(4df)(0,1) (33617 samples)



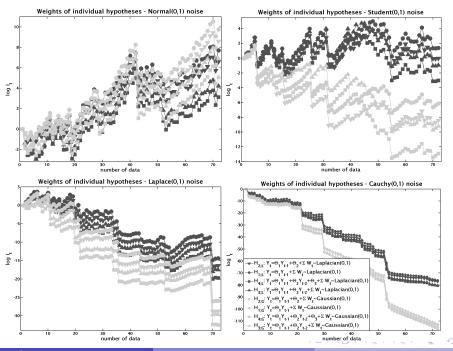
8/12

$$\begin{array}{rcl} H_{1}: Y_{t} &=& \Theta_{1} Y_{t-1} + \sigma W_{t} \\ H_{2}: Y_{t} &=& \Theta_{1} Y_{t-1} + \Theta_{2} + \sigma W_{t} \\ H_{3}: Y_{t} &=& \Theta_{1} Y_{t-1} + \Theta_{2} Y_{t-2} + \sigma W_{t} \\ H_{4}: Y_{t} &=& \Theta_{1} Y_{t-1} + \Theta_{2} Y_{t-2} + \Theta_{3} + \sigma W_{t} \end{array}$$

$$R: Y_t = [\Theta_1 = 0.9] Y_{t-1} + [\Sigma = 0.2] W_t$$

real\hypo	$H_1+W_t\sim\mathcal{L}$	$H_2+W_t\sim\mathcal{L}$	$H_3+W_t\sim\mathcal{L}$	$H_4+W_t\sim\mathcal{L}$	$H_1 + W_t \sim \mathcal{N}$	$H_2 + W_t \sim \mathcal{N}$	$H_3 + W_t \sim \mathcal{N}$	$H_4+W_t\sim\mathcal{N}$
$\mathcal{N}^{a}(0,1)$	0.486	0.013	0.164	0.004	0.29	0.001	0.043	5.3·10 ⁻⁷
$\mathcal{N}^{b}(0,1)$	0.191	0.007	0.006	0.002	0.63	0.013	0.093	0.002
$t_4(0,1)$	0.88	0.026	0.092	0.003	5.4·10 ⁻⁶	3.4·10 ⁻⁹	2.8·10 ⁻⁸	1.5.10 ⁻¹¹
$\mathcal{L}(0,1)$	0.876	0.048	0.073	0.004	2.6·10 ⁻⁷	3·10 ⁻¹⁰	9.1.10 ⁻¹¹	7.9.10 ⁻¹³
C(0,1)	0.87	0.096	0.031	0.004	7.0.10 ⁻¹⁸	8.1.10 ⁻²¹	4.5·10 ⁻²⁰	5.8·10 ⁻²³

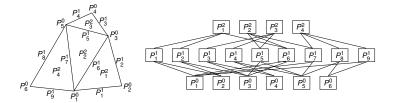
^{a,b} The choice of hypotheses for data from model with Normally distributed noise depends on the chosen prior distribution. We therefore give results for a prior specified by density $f(\Lambda|\mathcal{F}_0)$ the result is given in line $\mathcal{N}^a(0, 1)$ and also a result with prior specified by $f(\Lambda|\mathcal{F}_1)$ (posterior after one update) the result given in line $\mathcal{N}^b(0, 1)$.



Jan Šindelář (UTIA, Charles University)

AS UTIA 17.10.2011 10 / 12

Complexity:



$$N_n(r,t) = \sum_{p=n-r}^n \binom{p}{n-r} \binom{t}{p}$$

 $\lim_{t\to\infty} N_n(r,t) < t^n \quad \forall r \in \{0,1,\ldots,n\}$

Jan Šindelář (UTIA, Charles University)

э

イロト イポト イヨト イヨト

Thank you for your attention.

Jan Šindelář (UTIA, Charles University)

AS UTIA 17.10.2011 12 / 12

2