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Modelling time series

Y = (Y1,Y2, . . . ,YT ) (1)

Assumptions:
All quantities have density.
Relation between data is described by model f (Yt |Θ,Ft−1) and
time-independent parameters Θ

f (Yt |Θ,Ft−1)⇐ Yt+1 = ΘΦt + ΣWt+1 (2)

Prior distribution f (Θ|F0) describes beliefs - conjugate form.
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In a model with constant parameters, we use Bayesian data update

f (Θ|Yt ,Ft−1) =
f (Yt |Θ,Ft−1)f (Θ|Ft−1)∫

Ω f (Yt |Θ,Ft−1)f (Θ|Ft−1)dΘ
(3)

In a model with Gaussian innovations and GiW (NiG) prior the
estimation has two important properties

Exponential form of density – transforms multiplication into
summation of exponents
Quadratic (polynomial) form in the exponent conserves form when
summed with other quadratic form (polynomial of same order)

in a model with Laplace innovations and conjugate prior the first
property holds, while the second one fails
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Figure: The principal of update of logarithmized conditional probability density
of parameters f (Θ|Σ,Ft−1) in a model with Laplace noise via Bayes rule in
one dimension. The logarithm transforms multiplication into addition.

and Metropolis-Hastings or

Jt =
∑
Pj∈C

vol(Pj)Γ(νt − n − 1)

2νt n!

n+1∑
k=1

1

Hνt−n−1
k

n+1∏
l=1,k 6=l

1
Hl − Hk

(4)

where Hk is value of exponent at point P0
k ∈ C.
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Table: Descriptive statistics of maximum likelihood estimates of location
parameters in model yt = (α1 = 0.95)yt−1 + (α2 = 0.05)yt−2 + 0.2et for
different noises and two expected models.

model\real
N (0,1) t4(0,1)

mean(α̂1, α̂2) cov(α̂1, α̂2) mean(α̂1, α̂2) cov(α̂1, α̂2)

Gaussian
(
.8771
.0820

) (
.0229 −.0196
−.0196 .0208

) (
.9136
.0448

) (
.0350 −.0322
−.0322 .0357

)
Laplacian

(
.8535
.1011

) (
.0285 −.0247
−.0247 .0281

) (
.8988
.0682

) (
.0321 −.0281
−.0281 .0297

)

model\real
L(0,1) C(0,1)

mean(α̂1, α̂2) cov(α̂1, α̂2) mean(α̂1, α̂2) cov(α̂1, α̂2)

Gaussian
(
.8876
.0661

) (
.0275 −.0247
−.0247 .0290

) (
.9207
.0550

) (
.0236 −.0193
−.0193 .0303

)
Laplacian

(
.8998
.0652

) (
.0232 −.0205
−.0205 .0239

) (
.9354
.0532

) (
.0121 −.0106
−.0106 .0110

)
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H1 : Yt = Θ1Yt−1 + σWt

H2 : Yt = Θ1Yt−1 + Θ2 + σWt

H3 : Yt = Θ1Yt−1 + Θ2Yt−2 + σWt

H4 : Yt = Θ1Yt−1 + Θ2Yt−2 + Θ3 + σWt

R : Yt = [Θ1 = 0.9] Yt−1 + [Σ = 0.2] Wt

real\hypoH1+Wt∼LH2+Wt∼LH3+Wt∼LH4+Wt∼LH1+Wt∼N H2+Wt∼N H3+Wt∼N H4+Wt∼N
N a(0,1) 0.486 0.013 0.164 0.004 0.29 0.001 0.043 5.3·10−7

N b(0,1) 0.191 0.007 0.006 0.002 0.63 0.013 0.093 0.002
t4(0,1) 0.88 0.026 0.092 0.003 5.4·10−6 3.4·10−9 2.8·10−8 1.5·10−11

L(0,1) 0.876 0.048 0.073 0.004 2.6·10−7 3·10−10 9.1·10−11 7.9·10−13

C(0,1) 0.87 0.096 0.031 0.004 7.0·10−18 8.1·10−21 4.5·10−20 5.8·10−23

a,b The choice of hypotheses for data from model with Normally distributed noise depends on the
chosen prior distribution. We therefore give results for a prior specified by density f (Λ|F0) the
result is given in line N a(0,1) and also a result with prior specified by f (Λ|F1) (posterior after
one update) the result given in line N b(0,1).
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Complexity:
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Nn(r , t) =
n∑

p=n−r

(
p

n − r

)(
t
p

)

lim
t→∞

Nn(r , t) < tn ∀r ∈ {0,1, . . . ,n}
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Thank you for your attention.
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