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The paper is a follow-up of [R.J.: Foundations of compositional model theory. IJGS, 40(2011):
623-678], where basic properties of compositional models, as one of the approaches to multidi-
mensional probability distributions representation and processing, were introduced. In fact, itis
an algebraic alternative to graphical models, which does not use graphs to represent conditional
independence statements. Here, these statements are encoded in a sequence of distributions
to which an operator of composition — the key element of this theory — is applied in order to
assemble a multidimensional model from its low-dimensional parts. In this paper, we show a
way to read conditional independence relations, and to solve related topics, above all the so-
called equivalence problem, i.e. the problem of recognizing whether two different structures
induce the same system of conditional independence relations.

Keywords: multidimensional distribution; conditional independence; composition; semigraphoid
properties; running intersection property

1. Introduction

This paper is a follow-up of JirouSek (2011), where basic properties of compositional models, as
one of the approaches to multidimensional probability distributions representation and processing,
were introduced. Similar to other methods, such as Bayesian networks, the compositional models
take advantage of the properties of conditional independence to decrease the number of parameters
necessary for their representation. In fact, each of the approaches for multidimensional model
representation has a way to specify the system of conditional independence relationships valid
for the considered probability distribution.

One of the first applications of graphs for this purpose appears in papers from the field of
genetics by Wright (1921). However, it is known that not all systems of conditional independence
statements induced by a probability distribution can be described by a single graph. It was shown
by Verma (1987) that the spectrum of probabilistic dependencies is in fact so rich that it cannot
be cast into any representation scheme that uses a polynomial amount of storage. Being unable to
provide a perfect mapping at a reasonable cost, one compromises the requirement that a respective
tool such as a graph represents each and every dependency of a probability distribution, and allows
some independencies to escape the representation (Geiger and Pearl 1988).

The compositional models that were introduced as an algebraic alternative to graphical models
do not use graphs to represent conditional independence statements. Here, these statements are
encoded in a sequence of distributions to which an operator of composition — the key element of
this theory — is applied in order to assemble a multidimensional model from its low-dimensional
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parts. More precisely, a sequence of sets of variables — which will be called a model structure in
this paper — plays the same role as a graph in the case of graphical modelling.

Recall that several ways to read conditional independence statements have been designed in
the area of graphical models. In the case of undirected graphs, conditional independence relations
can be uncovered using a graph separation criterion. In the case of acyclic directed graphs, the
so-called d-separation criterion designed by Pearl is often used (Pearl 1988). An alternative test
for d-separation was devised in Lauritzen et al. (1990). It is based on the notion of moralized
ancestral graphs.

In Section 3.2 of this paper, we show a way to read conditional independence relations for
compositional models. A related topic is the so-called equivalence problem, i.e. the problem of
recognizing whether two different structures induce the same system of conditional independence
statements. For Bayesian networks, the problem was solved by Verma and Pearl (1991); two
acyclic directed graphs induce the same independence structure if they have the same adjacencies
and immoralities (the latter are special induced subgraphs). Later, a unique representation of a
class of equivalent graphs was found, the so-called essential graph (Andersson, Madigan, and
Perlman 1997). In the present paper, both these problems are solved for the compositional models
in Section 3.3.

Having two different structures inducing the same system of conditional independence state-
ments, it may be of special importance to have an easy way to transform one structure into the
other using some elementary operations. This issue was treated in a case of directed graphs in
Chickering (1995) by legal arrow reversal. To solve this problem for compositional models, we
introduce a special system of operations in Section 4.

Section 5, incorporated into the text at the suggestion of the anonymous reviewer, describes the
relationship between the compositional and graphical approaches to multidimensional probability
distribution representation.

In the last two sections of this paper, we show how the structural properties are manifested
in the properties of the multidimensional probability distributions represented in the form of
compositional models.

2. Basic notions and notation

In this paper, we deal with a finite system of finite-valued variables {u, v, x, ...}, sets of which
will be denoted by upper-case Roman characters such as K, U, V, W and Z, with possible indices.
Ordered sequences of variable sets will be denoted by calligraphic characters like
P=WUW,Z V), P = (K, Kz, K3, K4, Ks5), or, P = (K1, K3, K5, K4, K2). Notice that
here P’ # P” because P” is a reordering of P’. Symbol |P| denotes the number of sets in the
sequence, i.e. for the previously introduced sequences |P| = 4 and |P’| = |P"| = 5.

Lower-case Greek characters will denote probability distributions, e.g. 7 (K) will denote a
probability distribution defined for variables from K. Its marginal distribution for variables from
U C K will be denoted by either simply 7 (U), or ¥V For U = ¢, V¥ = 1.

2.1. Conditional independence

One of the most important notions of this paper, a concept of conditional independence, generalizes
the well-known independence of variables.

Definition 2.1 Consider a probability distribution 7 (K') and three disjoint subsets U, V, Z C K
such that both U, V' # (J. We say that groups of variables U and V are conditionally independent
given Z for probability distribution 7 (in symbols U LV |Z[r]) if
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In many basic books on probabilistic multidimensional models (e.g. Cowell et al. 1999; Pearl
1988; Studeny 2005), one can find the following important properties of conditional independence
that are universal and common for different formalization:

symmetry UlLV|Z[r]l e VIU|Z[r] 2.1)
decomposition UL (VU W)|Z[x] = ULV|Z[r] 2.2)
weak union UL(VUW)|Z[x]l= ULW|(VUZ)[r] (2.3)

contraction ULWI(VUD[rl& ULV Z[x] = ULV UW)|Z[x] 2.4)

where U, V, W and Z denote disjoint subsets of variables. Ternary relations that obey the four
properties listed above are often called semigraphoids (Pearl and Paz 1987).

2.2. Compositional models

In JirouSek (2011), we summarized results on probabilistic compositional models whose systems
of independence relations we are going to study in this paper. To be able to introduce these models
we have to recall the operator of composition and a couple of its most important properties that
were proved in Jirousek (2011).

{LKIOKZ <

Definition 2.2 For two arbitrary distributions 71(K) and m2(K>), for which! 7
nzl KiK2 their composition is given by the following formula?

(m > m2) =

VKINK, VK NK;
In case 7| K 7,

the composition remains undefined.

Lemma 2.3 Consider distributions w1 (K1) and w2 (K»). If w1 > 3 is defined, it is a distribution
for variables K1 U K> and
(11 &> )V =7y,

Moreover, for any U such that K1 N K, C U C K1 U K>

KiNU K>NU
rrlll n2¢2 .

(1 [>7'L’2)¢U = >

LEMMaA 2.4 Let k(K1 U K2) = m1(Ky) > m2(K>2) be defined. Then
(K1 \ K2)LL(K2 \ KDI(K1 N K2)[k].

From this point forward we will consider distributions 71(K1), ..., 7,(K;). To avoid too
many parentheses, whenever we speak about 7y > m > ... > m,, we assume that the operators
are realized from left to right, i.e.

m>m>...a,=((MD>m)>r3)>...>a,—1) > Ty, 2.5)

and that this expression is defined. In this way, Formula (2.5) represents a multidimensional
distribution of variables K1 UK, U. . .UK,, and we call the sequence 71 (K1), m2(K2), ..., m,(K,)
a generating sequence for distribution k = w1 > > ... D> 7,

Based on the above convention, we get the following assertion as a direct corollary of
Lemma 2.3.
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CoroLLARY 2.5 Consider a compositional model k with a generating sequence w1 (Ky),
m(K2), ..., mn(Ky) (iie. k =m >ma>...>my) Then, foralli =1, ...,n,

VKV UK T > D>,
Using the above corollary, one can easily get several specific marginals of a compositional
model. For a more general process of marginalization see Bina and Jirousek (2006).

3. Structures

Consider a compositional model defined by a generating sequence 71 (K1), m2(K2), ..., 7, (Ky).
Then the sequence of sets P = (K1, K2, ..., K,) is said to be its structure, and we use the
symbol K; € P to express the fact that K; is a member of this sequence. In what follows,
the symbol K (P) will always denote the set of all the variables appearing in structure P, i.e. for
the considered structure P = (K1, K», ..., K,), f(”P) =K|{UKyU...UK,.

In the following text, we are going to study what happens when we change the ordering of the
distributions in a generating sequence. Specifically, we want to characterize the changes that have
no impact on the generated multidimensional distribution. It appears that it is sufficient to study
elementary changes when a set from the structure is moved to a new position (and all the other sets
in the structure are respectively shifted). Such amove when the kth set is placed into the /th position
will be denoted by (k ~ [) and if this move is applied to structure P, the resulting structure will be
denoted by P(k ~ ). Thatis, for P = (U, W, Z, V) the reordering P(1 ~3) = (W, Z, U, V),
and for P’ = (K|, K3, K3, K4, K5), its reordering P'(5 ~ 4) = (K, K2, K3, K5, K4) can be
further reordered as, e.g. P'(5 ~ 4)(2 ~ 5) = (K1, K3, K5, K4, K3).

With respect to its position in a structure, each set U € P can be split into two disjoint parts.
We denote them R(P, U) and S(P, U), where R(P, U) denotes the subset of those variables from
U e P, which are not in any set preceding U in the sequence P. Conversely, S(P, U) denotes
the subset of the remaining variables from U which appear in at least one of the sets preceding U
in P.

For P = (K, ..., K,) it means that

R(P,K;) =Ky and R(P,K;) =K;\(KijU...UK;_)Vi=2,...,n,

and
S(P,Ky) =% and S(P,K;))=K;,N(KjU...UK;_)Vi=2,...,n.

We say that a set K; € P is reducible in P if K; = S(P, K;) and irreducible otherwise. In
other words, the reducible set does not introduce any “new” variable to the sequence, i.e. K; C
KiU...UK;_.

Example 3.1 Consider the structure P = (K, ..., Ks5) = ({u}, {u, v, w}, {u, v, x}, {w, y},
{u, y, z}) and its reordering P’ = P(3 ~ 1). For the respective R and S-parts, see Table 1.
Notice that K is reducible in P’ but not in P.

3.1. Persegrams

To visualize the structure of a compositional model (and its generating sequence) we use a tool
called a persegram. This visualization tool was originally designed in JirouSek (2008) in a slightly
different way.

Definition 3.2 The persegram of a structure P = (Ki, ..., K;;) is a table in which rows cor-
respond to variables from K(P) = K; U ... U K, (in an arbitrary order) and columns to sets
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Table 1. R and S-parts of the structures P and P’ = P(3 ~ 1).

R(P, ) S(P, ) R(P', ") S(P', )
Ky = {u} {u} ? 0 {u}
Ky = {u,v, w} {v, w} {u} {w} {u, v}
K3 ={u,v, x} {x} {u, v} {u, v, x} [
K4 ={w, y} {»} {w} {»} {w}
Ks =A{u,y,z} {z} {u, y} {z} {u, y}

K, Ky, K3 Ky K; Ky Ky Ky, Ky Ks

Figure 1. Persegram of structure (K1, ..., K5) and its reordering.

K1, ..., K, in the respective ordering. A position in the table is marked if the respective set
contains the corresponding variable. Markers for the first occurrence of each variable (i.e. the
leftmost markers in rows) are box-markers, and for other occurrences there are bullets.

Example 3.3 In Figure 1, we can see persegrams of structures P and P’ = P(3 ~ 1) defined in
Example 3.1.

Notice the difference between these persegrams. By reordering the columns — sets from the
structure — several markers change their shapes. For example, marker [K, u] is a box-marker in
‘P but a bullet in P’. Conversely, [K3, u] is a bullet in P but a box-marker in P’.

Observe that there is one-to-one correspondence between bullets in the column of K; and
variables from S(-, K;). Similarly, box-markers of K; correspond to R(-, K;).

3.2. Structural independence

Considering a compositional model, i.e. a multidimensional distribution generated by a generating
sequence, one can see that it is possible, using Lemma 2.4, to deduce a number of conditional
independence relations that must hold for this distribution. It is not surprising. The same property
holds for a Bayesian network where one can read a system of necessary conditional independence
relations from the corresponding acyclic directed graph. To determine all the independence rela-
tions induced by a structure of a generating sequence (we will call them structural independencies),
we use the above-defined persegram. Structural independencies are indicated by the absence of a
trail connecting relevant markers and avoiding others — see the following definition.

Definition 3.4 A sequence of markers my, ..., m; in a persegram of a structure P is called a
Z-avoiding trail (Z < K (P)) that connects mo and m, if it meets the following five conditions:

(1) neither mq nor m; corresponds to a variable from Z
(2) foreachs = 1,...,1, the couple (my_1, my) is either in the same row (i.e. a horizontal
connection) or in the same column (a vertical connection);
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(3) each vertical connection must be adjacent to a box-marker (i.e. at least one of the markers
in the vertical connection is a box-marker) — the so-called regular vertical connection;
(4) no horizontal connection corresponds to a variable from Z;
(5) vertical and horizontal connections regularly alternate with the following possible
exception:
at most, two vertical connections may be in direct succession if their
common adjacent marker is a box-marker of a variable from Z

If a Z-avoiding trail connects two markers corresponding to variables # and v, we say that these
variables are connected by a Z-avoiding trail. This situation is denoted by u «z v[P].

Similarly to a probability distribution 7w which induces a ternary relation on disjoint sets
of variables U 1LV |Z[r], a persegram, or more precisely a structure P = (K1, ..., K,), also
introduces a ternary relation on triples of variable sets.

Definition 3.5 Consider a structure P = (K1, ..., K,;) and three disjoint sets U, V, Z C I?(P)
such that U, V # (J. We say that sets of variables U and V are conditionally independent given
Z in P (in symbol U LV |Z[P])), if for each u € U it holds that there does not exist v € V such
that u «~z v[P].

So, we have defined two types of (conditional) independence for groups of variables: the
independence induced by probability distributions and that induced by structures. As already
mentioned above, we will call the latter case structural independence to distinguish between
these two types.

When the independent sets are singletons, we speak about elementary relations and denote
them in a simplified form u Il v| Z (instead of the more precise notation {u} L {v}|Z). Itis important
to realize that, for any structure P, all of its structural independencies are uniquely determined
by the system of elementary relations u}f v|Z[P] in the following sense:

ullv|Z[P] & ullw|Z[P] = ul{v, w}|Z[P]. 3.1)

because structural elementary relations are deduced from the nonexistence of a sequence of
markers u «~z v[P]. This property, naturally, does not hold for probabilistic independence, and
therefore it is quite natural that rule (3.1), which we will call an extension in the following text,
cannot be deduced from the semigraphoid rules (2.1)—(2.4).

Example 3.6 To illustrate the notion of a Z-avoiding trail, consider structure P = (K1, K2, K3,
K4, Ks) and its reordering P(3 ~ 1) — for the respective persegrams see Figure 2. In both of
these persegrams, the same sequence of markers is traced out:

[K2,v], [K2, ul, [Ks, u], [Ks, 2], [Ks, y].

Notice that in Figure 2(a), this sequence of markers is a Z-avoiding trail for each Z for which
{z} € Z C {w, x, z}. For each such Z thus v «~7 y[P]. If we want to stress which markers are
box-markers and emphasize a type of connection between the consecutive markers, we may also
write this sequence in the following form:

(K2, 0" ¢ [K2,ul® < [Ks5,ul® ¢ [Ks,zI" ¢ [Ks, y]®;

<— denotes a horizontal connection and ¢ vertical connection.

On the other hand, it is evident that the sequence of the same markers does not represent a
Z-avoiding trail in the persegram of P (3 ~ 1) (see Figure 2(b)). This is because in this case the
vertical connection [K7, v]® ¢ [K>, u]® is not regular in P(3 ~ 1). Nevertheless, one can see
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Z C{w, =z, =}

Figure 2. Sequence of markers in structure (K, ..., K5) and its reordering.

that v e~z y[P(3 ~ 1)], too, because for all Z for which {z} C Z C {w, x, z},
(K3, v ¢ [K3,ul® «— [Ks,u]® ¢ [Ks, 2" ¢ [Ks,y]®

is a Z-avoiding trail in the persegram in Figure 2(b).

The following two theorems justify the concept of Z-avoiding trails as well as the related
notion of structural independence, and the notation used. The first one says, among others, that
the relation of structural independence meets all the semigraphoid axioms. Note that the extension
property has already been mentioned above in formula (3.1).

TueoreM 3.7 For any structure P = (Ky, ..., Kp) the corresponding ternary relation of
structural independence has the following properties:

symmetry UlV|Z[P]l & VIU|Z[P] (3.2)
decomposition U1L(V U W)|Z[P] = ULV|Z[P] 3.3)
weak union ULWVUW)|ZIP]= ULW|(V U2Z)[P] (3.4)
contraction ULW|(VUZD[PI& ULV|Z[P] = ULL(V UW)|Z[P] (3.5
extension UILV|ZIP1& ULWI|Z[P]= U1l(V UW)|Z[P] (3.6)
intersection ULW|(VUZ)[P] & ULV|(WU Z)[P]

= UL (VUW)|Z[P], (3.7)

where U, V, W, and Z are disjoint subsets of I/(\(P); U, V, W are nonempty.

Proof Symmetry, decomposition and extension are trivial consequences of the definition of
structural independence. The remaining three properties will be proved by contradiction.

Weak union  Assume UL W |(V U Z)[P]. Due to the assumption U LL(V U W)|Z[P] and
from the decomposition rule we know that U IL W| Z['P]. It means that there must exista (V U Z)-
avoiding trail 4 «~yyz w for some u € U and w € W such that it contains two vertical
connections in direct succession with a common adjacent box-marker for a variable from V.
Considering the first appearance of a marker corresponding to variable from V, denote it v, we in
fact constructed u «~»z v, which contradicts U 1L V| Z[P] that is a consequence of the assumption.

Contraction  Assuming U LV |Z[P] and UX(V U W)|Z[P] means that there exists a
Z-avoiding trail u «~y w for some u € U and w € W. However, similar to the previous
step, since we assume that U LW |(V U Z)[P], the considered trail must contain two vertical
connections in direct succession with a common adjacent box-marker for a variable from V. This,
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again, suggests the existence of a Z-avoiding trail connecting variable u with a variable from V,
which contradicts to U 1LV |Z[P].

Intersection  Let us assume the opposite. If UJ(V U W)|Z[P], then for a certain u € U
there must exist v € (V U W) such that 4 «~7 v. Consider the shortest T = u «~»z v connecting
u with a node from (V U W). Without loss of generality, we can assume that v € V. Assumption of
UL V(WU Z)[P] induces that T has a horizontal connection in a w € W. Therefore, by cutting
the rest of T off, one can create T/ = u «~z w that is shorter than t and connects u with a node
from (V U W), which is impossible, because we chose t to be the shortest connecting trail. [l

The next important theorem was originally proven in JirouSek (2008). Here, we present a new
and more elegant (and hopefully also more transparent) proof based on the ideas of Verma and
Pearl (1990). This theorem reveals the relation between both types of conditional independence
in sets of variables: structural independence and probabilistic independence.

Tueorem 3.8 Consider a generating sequence 1y, ..., 7, with structure P = (K1, ..., Ky).
Then for arbitrary three disjoint subsets U, V, Z C K (P) suchthatU # @ and V # ¥ holds that

ULV|ZIP] = ULV|Z[1 > ... 7l (3.8)

Proof The proof will be led by an induction on the number of sets in the structure. The assertion
is obvious for |P| = 1 (there is no structural independence). Suppose it holds for all structures of
a length less than n and let us prove it for P = (K1, ..., K,).
To simplify the readings, put R = R(P, K,,) and S = S(P, Kp). Note that each set of
U, V, Z can be expressed as a union of two disjoint parts U, V,Z C (KjU...UK,_1) and
Ry, Ry, Rz C R,respectively,i.e. U, V, Z, R aredisjoint. Then U 1L V| Z[P] can be equivalently
written as
(UURy)I(VURy)(ZU Rz)[P]. (3.9

The proof will be performed for several special cases characterized by which sets from Ry,
Ry and Rz are empty. Theoretically, we can distinguish eight situations. However, using the
symmetry (3.2) and the fact that Ry and Ry meeting (3.9) cannot be nonempty simultaneously
(all couples of variables from R can be connected by a regular vertical connection) it is enough
to investigate the following four cases:

(i) Ry,Rv,Rz =0,

(i) Ry #9; Ry, Rz =1,
(iii) Rz #@; Ry, Ry =1,
(iV) RU, RZ 75 @ RV = 0.

Ad (i) So, ‘we assume U JLV|Z [P] where U, V, Z are three disjoint subsets of K (P) disjoint
with R (ie. U,V,Z C (K{ U...U K,_1)). Since each Z- -avoiding trail in a persegram of
(Ki,...,K,_1) is also a Z-avmdlng trail in a persegram of P = (Ky,..., K,—1, K;), it is
obvious that

ULV|Z[P] = ULV|Z[(K),..., Kn_D].

Therefore, using the induction hypothesis we get U iLV|Z [71 > ... > m,—1], which implies
ULV|Z[mi>...0>m,]since > ..>7, 1 is, due to Corollary 2.5, a marginal of 7y > . . .[>71,,.

Ad (ii) In thls case, we assume that Uy RU)JLV|Z[73] andU,V,Z, R are dlSJOlnt Based
on this, we will also show that

(UURy U(S\ 2)ILVI|Z[P]. (3.10)

Namely, the negation of (3.10) corresponds to the existence of a trail v «~5 s for some v € v
and s € (S \ Z). Considering the shortest such trail (this means, among other things, that the
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connection to the marker corresponding to variable s is vertical) we can see that it can be extended
by two markers (connections)
° L]
<« [Kp,s]” ¢ [Ky, 7]

for any r € Ry, which contradicts the assumption (U U RU)iL‘_/|Z [P]. This means that rela-
tion (3.10) holds.
Applying decomposition property (3.3) to relation (3.10) we get

(UU(S\ 2)LV|Z[P],

which satisfies the conditions of the previously proven case (i), namely, (Uu(s \ 7)), V, Z and
R are disjoint, and therefore

(UUGS\Z)LV|Z[r > ... 7wl (3.11)

It is easy to also see that (VNS) = ¢. Indeed, if not then v «~y r (consisting of just one
regular connection) for any v € (VNS) and any r € Ry contradicting (U U RU)JL\_/|Z[73].
Note that RJL(I? (P) \ Kp)|S[m1 > ... > m,] by Lemma 2.4. By the (multiple) application of
decomposition (2.2) it follows that

RyLL(VU U\ S)U(Z\S)|S[m1 > ...>m,],
which can be, using the weak union property (2.3), further rewritten into
RyLVI(ZUU U(S\ Z)[m > ... m,l. (3.12)
Now, applying the contraction property (2.4), statements (3.11) and (3.12) yield
(UURy U(S\ Z2)ILV|Z[m1 1> ... m,], (3.13)

from which the desired conditional independence (UURy)LV | Z[my > ...> m,] is obtained by
using the decomposition property (2.2).
Ad (iii) Assume the independence statement in the form of

ULV|(ZURp[PI, (3.14)

where, again, U,V and Z, R are disjoint.

Now, let us show by contradiction that either UlR, | Z[Plor Rz 1LV | Z[P]. Assuming that
neither of these two independence relations hold, there must exist trails u «~ 5 ri[P]land rp e 5
v[P] (consider the shortest possible) for some u € U,v € Vandr,r € Rz Each variable
from r € R has only one marker in the respective persegram, and therefore both trails contain
only one marker from R — the one at the end. It means that changing just the last marker in trail
u «~ 5 r[P]one gets u «~5 r>[P], and by concatenating trails u «~s5 r2[P] and rp <5 v[P]
one gets u vz, [Plv. Sir}ce_the last trail contradicts our assumption, we proved that really
either UALRz|Z[P]or Rz 1LV |Z[P].

Without a loss of generality, assume that Rz L V|Z[P]. This independence statement along
with the relation (3.14) meets the assumption of the contraction property (3.5), which yields that
(UURZ) LV | Z[P]. This structural independence statement meets the assumptions already solved
in the proof in case (ii). It means that the corresponding probabilistic conditional independence

(UUR)LV|Z[my > ... > 7]

must also hold true, from which the required probabilistic conditional independence ULV|(RzU
Z)[m > ... > m,] can be obtained by the simple application of the weak union rule (2.3).
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Ad (iv): Now, we assume (U U Ry) ALV |(Z U Rz)[P] with disjoint U, V, Z and R.

First, let us show by contradiction that Ry LV | Z[P]. Assuming the opposite there must exist
atrail r, «~ 7 v[P] for some r, € Ry and v € V. In this trail, there is no horizontal connection
corresponding to r € Rz since there is only one marker for every r € R in P. Therefore, this trail
isalso ZUR z-avoiding trail. However, the existence of such a trail contradicts our assumption,
which completes this step of the proof.

Following the idea from the previous part of the proof, we know that any trail r «~ 5 v[P]
for some r € R, v € V can be modified into r, «~ 7 v[P] (for r, € Ry) just by substituting
the marker corresponding to r by the marker corresponding to r,,. Therefore, we can see that the
relation Ry ALV |Z[P] proven in the preceding paragraph implies (Rz U Ry) ILV | Z[P]. The last
structural independence statement can be treated in the same way as case (ii), which means that
the probabilistic independence statement

(RzURy)ALV|Z[m > ...> 7] (3.15)

also holds true.

On the other hand, ULV |(Z U Rz U Ry)[P] can be obtained from the given independence
statement using the weak union property (3.4) and it can be treated in the same way as in case
(iii). Hence

ULVI(ZURzURy)[m > ...0>m,]. (3.16)

Applying the contraction property (2.4) on (3.15) and (3.16), one gets
(UURZzURy)ALLV|Z[m > ...> m,l,

from which the desired statement can be obtained by application of the weak union
property (2.3). 0

3.3. Structural equivalence

An inherited part of the notion of structural independence is implied by its structural properties that
uniquely determine the induced structural independence relations. To illustrate such properties,
let us summarize the most important results from Kratochvil (2011, 2013). Two structures P and
P’ will be said to be equivalent if they induce the same structural independence relations, i.e. if

ULV|Z[P] < ULVI|Z[P]

for all disjoint sets of variables.
Naturally, a trivial necessary condition for two structures P and P’ to be equivalent is that
they are defined over the same set of variables: K (P) = K (P’).

3.3.1. Non-trivial sets

A necessary and sufficient condition for structures to be equivalent is closely connected with the
notion of a non-trivial set.

Definition 3.9 We say that U is non-trivial with respect to P if there exists K; € P such that
U C K;and U N R(P, K;) # (. The collection of all sets U that are non-trivial with respect to
a structure P is denoted by A (P).

The notion of non-trivial sets was introduced in Kratochvil (2011) where it was identified as
a property invariable within a class of equivalent structures. Later, in Kratochvil (2013), it was
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Figure 3. Non-trivial sets in different structures.

proven that correspondence of these sets is not only necessary but also sufficient to guarantee the
equivalence of two given structures.

TueorREM 3.10 Structures P and P’ are equivalent iff N'(P) = N'(P’).

Example 3.11 Consider two structures P; and P, whose persegrams are shown in Figure 3,
where all the respective non-trivial sets are highlighted. Considering Theorem 3.10, the respective
structures are not equivalent because

NPy = {{u}, {v}, {w}, {u, wh {v, w}, {u, v, w}
# N (Pp) = {{u}, (v}, {w}, {u, w}, {v, w}}.

Remark 3.12 Note that there is a close connection between non-trivial sets of cardinality 2 and
regular vertical connections; similarly, there is a close connection between non-trivial sets of
cardinality 3 and alternating of vertical and horizontal connections.

A special combination of both these cardinalities deserves our attention. Consider a triplet
{u, v, w} € N(P) such that {u, v} € N (P). Let K be the set guaranteeing the non-triviality of
the triplet in P (i.e. {u, v, w} € Ky; {u, v, w} N R(P, Kx) # ¥). Obviously, {u, v} € S(P, Ki)
because we assume it is trivial. Moreover, an analogous reasoning yields that # and v have to be
introduced in different sets preceding Ky in P, i.e.u € R(P,K;),v € R(P,K;),i # j,and
both indices i, j < k. So, one can easily see that a specific combination of non-trivial and trivial
sets may put restrictions on the ordering of sets in the respective structure, and, by Theorem 3.10,
in every structure equivalent with it. This property will be frequently used in Section 7, where
we will use a symbol A3_,(P) to denote a system of non-trivial triplets with a trivial subset of

cardinality 2 —i.e. N32(P) = {{u, v, w} € N(P) : {u, v} & N(P)}.

Remark 3.13 The reader familiar with the imsets of Milan Studeny (Hemmecke, Lindner, and
Studeny 2012) can see a close connection between this famous apparatus and the above-introduced
concept of non-trivial sets. Recall that a characteristic imset is a unique representative of an
independence structure induced (represented) by an acyclic directed graph of a Bayesian Network
(BN). In the case of a graph G(N, E), it is a {0, 1}-vector indexed by subsets of N. It is easy to
show that every probability distribution that can be represented by a compositional model with a
structure P can be equivalently represented using a BN with a graph G. Moreover, P and G are
equivalent in the sense that they encode the same system of structural independencies. It turns
out that 1-component of characteristic imset of G corresponds to A/ (P).

In fact, it was shown in Kratochvil (2013) that non-trivial sets of cardinality 2 and 3 are
sufficient to guarantee the equivalence. The algorithm generating the complete A/ (P) from the
respective non-trivial sets of cardinality 2 and 3 was published in Studeny, Hemmecke, and
Lindner (2012) in the case of characteristic imsets. It is based on the fact that a set of cardinality
¢ > 4 is non-trivial if there are at least three different non-trivial subsets of cardinality ¢ — 1.
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3.3.2. Formal ratio

Since the number of non-trivial sets grows exponentially with the number of variables, they are
not very useful for characterization of the structural properties of compositional models. This is
why another closely related tool has been derived.

It appears that an efficient test of equivalence of structures can be based on a concept of a
formal ratio that was introduced in Kratochvil (2013). Informally stated, one can write a formal
ratio F(P) for a structure P as a ratio in which the numerator contains all of the sets K; for
K; € P, and the denominator contains all of the sets S(K;, P) for K; € P. If there are sets
contained in both the numerator and denominator then these sets are “canceled” with each other:
one occurrence of a set U € P in the numerator is cancelled with one occurrence of the same set
in the denominator.

Using a formal notation of multisets, [S(K;, P)] k;ep» Which are sets in the sense that the
ordering of the included sets is irrelevant but in which one element may appear several times, we
may express this idea precisely by the following definition:

Definition 3.14 A formal ratio F ('P) corresponding to a structure P is

[Kilg,ep \ [S(P, Ki)lg,ep
[S(P. K)lk,ep \ [Kilg,ep

Example 3.15 Consider structure P = (K1, K2, K3, K1) = ({u}, {v, w}, {u, v, x}, {w, x, y}) and
its reordering P’ = (K4, K3, K2, K1) = ({w, x, y}, {u, v, x}, {v, w}, {u}). For these structures

[S(P7 Kl')]Kie'P = Qv M’ {ua U}, {wv .X},
[S(P/, Ki)]K,'EP = @$ {x}a {Uv LU}, {M},

and therefore the respective formal ratios are the following

_ Afu}, v, wh {u, v, x} {w, x, y)
FP) = @, %, {u, v}, {w, x} ’
{u, v, x}, {w, x, y}

@, {x}

Let us stress once more that the ordering of sets in both numerator and denominator is irrelevant.

FP) =

The importance of the formal ratio follows from the following assertion proven in Kratochvil
(2013):

THEOREM 3.16 Structures P and P’ are equivalent if their formal ratios coincide.

The proof in Kratochvil (2013) is based on the following idea. Assume a zero-one vector
up whose coordinates correspond to all subsets of K (P) such that up[U] = 1if U € N(P)
and up[U] = 0 otherwise. Similarly, let an integer vector c¢p (of the same length) be such that
cp(U) = 1if U is in the numerator of F(P), cp[U] = —k if U is in the denominator of F(P)
k-times, and cp[U] = 0 otherwise. Obviously, up uniquely characterizes N (P). Similarly, cp
uniquely characterizes F (P). It can be shown that up is a Mdbius transform of ¢p and vice versa;
the proof is completed by employing Theorem 3.10. Note that there is again a close connection
between vectors up and c¢p and Studeny’s imsets mentioned in Remark 3.13.

Example 3.17 Observe that structures P and P’ from Example 3.1 are equivalent. They both
induce the following formal ratio:

{M, v, w}v {M, v, X}, {w7 y}s {M1 ) Z}

FP)=FP) = @, {w}, {u, v}, {u, y}
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To conclude this Section, let us summarize its results in an easy form. The following three
statements are equivalent:

e P and P’ are equivalent;
o N(P)=N(P');
o F(P)=F(P).

4. Operations on structures

Assume that P and P’ are equivalent. The question to be answered in this Section is how to get
from P’ to P in terms of some elementary operations on the structures. Another very important
aspect is our ability to generate all structures equivalent to a given one. In other words, we are
looking for operations that, applied to a structure, yield other structures within the same class of
equivalence. Regarding Theorem 3.16, we can see that we are looking for operations that do not
change the formal ratio of a structure, and the respective definition gives us a clear hint about the
form of possible operations.
These operations can be divided into two groups:

(1) Adding/removing sets — we can add/remove a set whose impact disappears during formal
ratio cancelation (i.e. adding or deleting a reducible set).

(2) Reordering keeping the system of S-parts, we can apply changes that do not modify the de-
nominator of the formal ratio. Hence, for both P and its reordering P’ [S(P, K;)] KieP =
[S(P, K)k,ep-

Before we investigate all these elementary operations in detail, note that all of the mentioned
operations were introduced in Kratochvil (2013) together with the proof of their completeness.

4.1. Adding/removing sets

It has been shown that we can restrict ourselves to adding/removing of only reducible sets. Recall
that K; is reducible in P if K; = S(K;, P).

Definition 4.1 By simple extension/reduction of P we understand a structure that differs from P
in adding/removing of one set reducible in P.

Example 4.2 Recall the structure P’ = (K3, K1, K2, K4, K5) introduced in Example 3.1. One
can easily see in Figure 1(b) that K is reducible in P’, and hence (K,, K4, K3, Ks) is a simple
reduction of P’.

THEOREM 4.3 A structure P and its simple extension/reduction are equivalent.

Remark 4.4 Theorem 4.3 was proven in Kratochvil (2013) by showing that this type of transfor-
mation does not influence the respective formal ratio. However, the reader may find it interesting
to see how to prove the above assertion using the notions of Z-avoiding trails. Consider the
persegram of P and the corresponding system of all the induced Z-avoiding trails. There is no
box-marker in the columns corresponding to reducible sets. Therefore, there can be no regular
vertical connection in such columns. That is why adding/removing of a reducible set cannot affect
the system of Z-avoiding trails, which means that the respective structures are equivalent.

4.2. Reordering

Let P’ be a reordering of P (i.e. K; € P’ & K; € P). As mentioned above, P’ and P are
equivalent iff (F(P) = F(P')), and therefore also iff [S(P’, Ki)lk,ep = [S(P, Kj)][(jep.
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In the following, we restrict ourselves to simple reorderings — transpositions of two successive
sets K, Ki+1. In the introduced notation, such a reordered structure P can be denoted by
P(k ~ k—1) or, equivalently, P(k—1 ~ k). The reason for this restriction is clear: recall that both
R- and S-parts of a set K; € P are fully given by the set itself and the union of the sets preceding
K. Hence, by swapping positions of two consecutive sets, the R- and S-parts remain the same for
all of the other sets not being swapped. In a more formal way, in the case of P = (K1, ..., K,)
and P’ = P(k—1 ~ k), it holds that S(P’, K;) = S(P, K;) and R(P’, K;) = R(P, K;) for all
i €{l,...,n}suchthati # k,i # k — 1. Thus, to check whether F(P(k—1 ~ k)) = F(P), it
is enough to check only the swapped sets.

4.2.1. Constant transposition

Constant transposition is designed to preserve R- and S-parts of involved sets.

Definition 4.5 Consider a structure P = (K1, ..., K;). Its reordering P(k—1 ~ k) is called its
constant transposition if R(P, Ky_1) N Ky = @.

Example 4.6 Considering structure P from Example 3.1 (see Figure 1(a)), one can easily see that
P(4 ~ 3)is a constant transposition of P. Indeed, R(P, K3)N K4 = {x}N{w, y} = @. Similarly,
P4 ~3)(5 ~4) = (K1, Ko, K4, K5, K3) is a constant transposition of P(4 ~ 3).

To show that a structure and its constant transposition are equivalent, it is enough to show
that [S(P’, Ki)]k,epr = [S(P, Kjlkep-In fact, it has thus been shown that even a stronger
property holds true:

TueoreMm 4.7 If P is a constant transposition of P, then S(P’, K;) = S(P, K;) forall K; € P.
The proof has been published in Kratochvil (2011).

Remark 4.8 We can generalize constant transposition for long distance moves as well. Here, we
show just a very special case needed in Section 7.

Assume P = (Ky,...,K;),2 < k < n such that S(P, Kx) € K;. We can see that
Pk ~2) = Ptk ~ k—=1)(k—1 ~ k=2)...(3 ~ 2), and that each of these subsequent
transpositions corresponds to a constant transposition: R(P, K;) N Ky = R(P, K;)NS(P, Ki)
R(P, K;) N K1 = () by the definition of the R(P, K;) for all i = 2,...,k — 1. Therefore,
Pk ~ k—1) is a constant transposition of P and, by iterative application of Theorem 4.7,
Pk ~ k—1)(k—1 ~ k—2) is a constant transposition of P(k ~ k—1), etc.

4.2.2. Box transposition

A constant transposition preserves S-parts of the involved sets. On the contrary, box transposition
was designed to interchange these S-parts.

Definition 4.9 Consider a structure P = (K1, ..., K,). Its reordering P(k—1 ~ k) is called its
box transposition if S(P, Kx—1) = S(P, Kx) \ R(P, Kx—1).

To prove that a structure P and its box transposition P’ are equivalent (F(P) = F(P')), itis
enough to prove that [S(P’, Ki)lk,ep' = [S(P, Kj)]k;ep-

THeOREM 4.10 IfP’ = P(k—1 ~ k) is a box transposition of P, then S(P’, K;) = S(P, Kx_1)
and S(P', Ki_1) = S(P, Ky).

The proof has been published in Kratochvil (2011).
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Remark 4.11 Let P = (Ky, ..., K,),n > 2. Note that P(2 ~ 1) is always either a box or a
constant transposition of P. It is a constant transposition if K1 N K> = #J and a box transposition
otherwise.

Example 4.12 Assume a structure P from Example 3.1 once again (see Figure 1(a)). Note that
P (3 ~ 2) is a box transposition of P. Indeed, S(P, K3) \ R(P, K») = {u, v} \ {v, w} = {u} =
S(P, K»>). Considering Remark 4.11, transposition (2 ~ 1) always corresponds to either a box
or a constant transposition. Specifically, if applied to P(3 ~ 2),ie. P3 ~ 2)(2 ~ 1) is a
box transposition of P(3 ~ 2). Hence P’ from Example 3.1 (see Figure 1(b)), where P’ =
(K3, K1, K2, K4, K5) = P(3 ~ 2)(2 ~ 1) is obtained from P by two constant transpositions.

The completeness of the above-mentioned operations was shown in Kratochvil (2013):

THEOREM 4.13 Two structures P4 and Pp are equivalent iff there exists a sequence P, . .., Py,
m > 1 of structures such that Py = Py, Pm = Pp and Pi41 is a simple reduction/extension,
constant transposition, or box transposition of P; foralli =1, ..., (m—1).

5. Relation to graphical models

This section, included into the paper at the instigation of the anonymous reviewer, is intended
for the reader familiar with probabilistic graphical models, who requires to see the relation
between graphical and compositional approaches to multidimensional probability distributions
representation. It means that, among others, the results described in this section will not be used in
subsequent parts of this text, and therefore the section may be skipped without depriving legibility
of the rest of the paper.

It is known that the class of compositional models is, in a way, equivalent to a class of
distributions representable in a form of Bayesian networks (JirouSek 2004), which can be
introduced in two different ways. One possibility is to define Bayesian network (BN) as a couple of
an acyclic directed graph (DAG) and a respective system of conditional probability distributions.
Here, we will use an alternative approach that defines a BN as a probability distribution factorizing
with respect to a DAG. In any case we have to use a couple of symbols from graph theory.

Let us consider a DAG G = (V, &) with nodes from a set of variables V = {x, x2, ..., x4}
and the set of oriented edges €. If (x; — x;) € £ then we say that x; is a parent of x ;, and pa(x;)
denotes the set of all parents of x;. Forall j = 1,...,nlet K; = pa(x;) U {x;}. We say that a
probability distribution « (V') is a BN with DAG G = (V, ) if it factorizes with respect to G, i.e.
if
ﬁ i VKi
i=1

l_[ KvLP“(xi)

i=1

k(V) = 5.1)

5.1. Transformation of a BN into a compositional model and vice versa

To get a compositional model representing a distribution «(V'), which is a BN with graph
G = (V, &), is a simple task. First, one has to realize that nodes of a DAG can be ordered
in the way that parents are always before their children. Without loss of generality assume it is
the ordering (x1, x2, ..., x4), i.e.

xXi € pa(x;) = I <]
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This ordering guarantees the fact that pa(x;) € {x1, x2, ..., xj_1}, and therefore formula (5.1)
rewrites into the form

k(V) = P A ...D/c“(q,

where K; = {i}Upa(i)foralli =1, 2, ..., g. Notice that the structure of this model (K, K>, ...,
K,) is unambiguously specified by the graph of BN.
The opposite transformation of a compositional model into a BN is a little bit more com-
plicated. Consider a general compositional model (V) = mi(L1) > ma(Ly) > ... > w,(Ly)
n
with structure P = (L1, Lo, ..., L,), such that | J L; = V. This model is, as a rule, equivalent

=1
to several BNs. To get a unique DAG we have lto choose an ordering of variables from V. Let

this ordering be defined by the relation <. Now, the definition of the required DAG is simple:
G = (V, ), where

(x; = x;) € Ciff there exists k € {1, ..., n}, such that {x;, x;} C Ly,
j € R(P, Ly), and eitheri € S(P, Lg), ori < j. (5.2)

The reader certainly noticed that we do not need the ordering on the whole set V but just on
all subsets R(P, Ki). Given these orderings the graph of the resulting BN is uniquely given by
the structure of the considered compositional model. In general, however, the respective DAG is
not unique. It follows from (5.2) that the orientation of edges is from S- to R-part of the involved
set. If both variables are from R-part of the set, then the edge orientation may be arbitrary and it
is determined by relation <, randomly chosen before.

5.2. Impact of basic operations

In this subsection we answer the question how the graph of the corresponding BN changes
when we apply a basic operation (constant or box transpositions) to a compositional model.
Realize that the existence of reducible sets does not influence the respective graphs constructed in
the preceding paragraph, and therefore adding/removing reducible sets does not change the
structure of the equivalent BN.

Recalling definition of non-trivial sets we immediately see from (5.2) that (x; — x;) € £ iff
(xi, xj) € N(P), or, in other words, every edge corresponds to a non-trivial set of cardinality
two and vice versa. Therefore, using Theorems 3.10 and 4.13 guaranteeing that constant and box
transpositions do not change the set of non-trivial sets, we see that constant and box transpositions
neither introduce nor delete an edge in the DAG of the respective BN. The question remains
whether these transformations can change the orientation of the edges. As mentioned above, the
orientation of every edge is from § to R, or, if both variables are in an R-part of the set, then the
orientation is given by the previously chosen ordering <.

5.2.1. Constant transposition

Consider a structure P = (L1, ..., Ly,). Recall that its reordering P’ = P({—1 ~ £) is called
constant transposition if R(P, Ly—1) N Ly = #. Using Theorem 4.7, it means that

S(P,Lj)=S(P',L;j) and R(P,Lj)=R(P',Lj)

forall j =1, ..., n. Therefore, regarding the rule (5.2) we can immediately see that the constant
transposition does not change the DAG of the corresponding BN.
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5.2.2. Box transposition

Recall that the reordering P({—1 ~ ) of a structure P = (L, ..., L,) is called a box
transposition if S(P, L¢—1) = S(P,L¢) \ R(P, L¢—1). Theorem 4.10 says that if P’ =
P — 1 ~ £) is a box transposition of P, then S(P’, Ly) = S(P, L¢_1) and S(P', L;_1) =
S(P, Ly). Therefore,

R(P',L¢) =Lg\S(P',L¢) =L¢\ S(P, Le—1) = R(P, Lg) U(R(P, Lg—1) N Ly).

So, the following situations may happen if R(P, Ly—1) N Ly # @. Consider x; € (R(P, Ly—1) N
Ly) and x; € R(P, Ly). In this case, naturally, x; € S(P, L¢), and therefore the graph of a
BN corresponding to structure P has an edge (x; — x;). On the other hand side, both x;, x; €
R(P’, Ly). and therefore the orientation of the respective edge in the graph corresponding to
structure P’ depends on relation <. An analogous situations happens if x; € (R(P, L¢—1) N L)
and xx € (R(P, Ly—1) \ Ly). In this case the orientation of the edge connecting these two nodes
in the graph of a BN corresponding to structure P is given by relation <, whereas the graph
corresponding to structure P’ contains the edge (x; — x;) regardless relation <.

So, we see that a box transposition can change the orientation of an edge of the corresponding
BN but only in situations when there are several equivalent BNs corresponding to the given
structure.

6. Operations on generating sequences

Up to now we have studied the impact of elementary operations (transposition and adding/deleting
sets) on structural independence. From this point forward, we will study what happens when
performing the introduced elementary operations with distributions — elements of a respective
generating sequence (a sequence of low-dimensional probability distributions that represent a
compositional model). What is the impact of each of these operations on the respective com-
positional model? What are sufficient conditions for two compositional models with equivalent
structures to be the same? These are the questions to be answered in this Section.

In order to simplify the following lemmata, we will work with a model whose generating
sequence consists of only three distributions 771 (K1), m2(K>), and w3 (K3). Thus, we will consider
a generating sequence with a structure P = (K1, K2, K3), and will apply respective operations
on 7 and 3. Notice that this simplification is not at the expense of generality. Indeed, realize that
m1(K1) may be a compositional model itself — it may be composed from several distributions.
Similarly, if 1 (K1), m2(K?2), m3(K3) is from the beginning of a much longer generating sequence,
Lemma 2.3 says that we in fact study properties of a marginal of a multidimensional distribution
represented by a long generating sequence.

The first lemma deals with the simple extension/reduction of a structure and of the respective
compositional model.

LemmA 6.1 Consider three distributions w1(K1), m2(K>), and w3(K3) such that wy > m) is
defined. If K, is reducible in P = (K1, K2, K3) then

T > >y = m D> 3. (6.1)

Proof K, is reducible if K, = S(P, K»), i.e. if K € Kj. Therefore, K; = K| U K, and
therefore (7 > m) VK1 = 74 by Lemma 2.3, which completes the proof. U

LemMma 6.2 Consider three distributions w1(K1), m2(K2), and w3(K3). If (K1, K3, K»2) is a
constant transposition of (K1, K, K3) then

m >y =m1 >3 > ). (6.2)
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Proof Recall that (K1, K3, K») is a constant transposition of (K, K2, K3) if R(P, K3) N
K3 = . It means that K» N K3 € S(P, K2) € K. Therefore, we can apply Lemma (5.7)
from Jirousek (2011), which yields that w1 > 7y > 13 = 71 > 713 > 7). O

Lemma 6.3 Consider three distributions (K1), m2(K>), and w3(K3) such that w and 73 are
consistent. If (K1, K3, K3) is a box transposition of (K1, K3, K3) then

T > >y = > 3 > ). (6.3)

Proof Consider P = (K|, K3, K3) and denote P’ = (K|, K3, K3). Let us start by showing
that, under the given assumption, | I> 75 > 73 is defined iff 71 > w3 > 7 is defined. Recall that
1 > 1y > w3 is defined iff

@) n_ILS('P,Kz) & 7_L_2¢S(73,K2)

(i) (1 > m)SPEKD « 7y

,and
S(P.K3)

Analogously, 1 > w3 > w3 is defined iff

(i) 7} 5P KD g SPRED yng

(v) (1 > 73)VSP K2 ]TZLS(PCKz).

Using Theorem 4.10 and consistency of > and 73 we see that (i) and (iii) coincide. Let
us prove that (ii) and (iv) also coincide. By the definition of box transposition, observe that
S(P, K2) € S(P, K3). Denoting S = S(P, K3) we can easily see (just using the definition of
S(P, K;)) that

(K1NKy)=8P,Kz) €S C K, C(K1UK»), (6.4)

from which we immediately see that

(SNKy)=8=(SNK3). (6.5)
This enables us to compute
(11 > ) VS = nlwm(l > nzwml(z _ nlwml(l > n3¢SﬁK3 = (1) > 713)",

where the first equation is guaranteed by relationship (6.4) and Lemma 2.3, the second equation
follows from equality (6.5) and the assumption of consistency on w5 and 773, and the last equation
is guaranteed again by Lemma 2.3. Thus, we have shown that (ii) is equivalent to (iv).
Let us now assume that both expressions in equality (6.3) are defined. Because of Lemma
4.10 and the fact that 7> and 73 are assumed to be consistent, the expressions
T 273
nziS(P.Kz)jT?’iS(P,Kg) ’

TTTT27T3
7_[3¢S(73 ,K3)7T2¢S(’P ,K3)

T >y =

mb>nyb>ay =

are mutually equivalent, which completes the proof. U

7. Conditioning and flexible sequences

Knowledge of structural properties of a compositional model helps us, among other things, when
computing conditional distributions. Namely, it can be shown that computation of a conditional
distribution 7 (-lu = «), for distribution 7 represented in the form of a compositional model
T =m > ... D> m,,is granted to be easy only if the conditioning variable u appears among the



Downloaded by [Vaclav Kratochvil] at 02:06 24 September 2014

International Journal of General Systems 19

arguments of the first distribution 7r;. This property is more precisely expressed in the following
assertion.

THEOREM 7.1 Letmy, mo, ..., T, beagenerating sequence with structure’ P = (K1, Ko, ..., Kp)
and u € K. Then, for any value o of variable u for which w1 (u = o) > 0,

B> ... ) (KP)\ (Ul =) = k1 >k B> ... B>k,
where foralli =1,2,...,n

. NEO ifu ¢ K;
K‘(K'\{u})_{m(Ki\{“H“:“) ifueK;.

Proof Let us show that the assertion holds for n = 2. For n = 1 the assertion is trivial, and
for n > 2 it can easily be proven by the technique of mathematical induction based on the fact it
holds for n = 2.

Let us distinguish between two situations: u € K and u € K». If u € K5 then

(m1 > m) (K1 U K2) \ {u}|u = a)
_ (m > m)((Ki UKo\ {u}, u =a)
B (1 > )W (u = )
T (Ki\{u}, u = o) > (Ko \ {u}, u = a)
rrl“u}(u =)
mi(Ki\ {u),u=a) (Ko \ {u}, u = @)
rtw=a) KN K\ () u =)
T (Ko \ {u}, u = )
2y = @)y (K N K\ (= )
_ K\ fu)lu = @) - ma(Ka \ {u)lu = @)
oy K (K N o)\ fuu = @)
= 71 (K1 \ {u}lu = @) > m2(Ka \ {u}lu = @)

=m(Ki \ {ullu =a) -

If u ¢ K>, the computation, though analogous, is even simpler.

m (K \ {u}, u = a) > m(K3)

(1 > m2) (K1 U K2) \ {u}|u = ) Tl
Ty

(=)
_mK \uhu=a) 72(K>)

i u=a0) K N K)
=71 (K1 \ {u}|lu = a) > 72(K3)

O

In light of Theorem 7.1, it seems reasonable to study this question: When and how can a given
generating sequence be reordered so that a desired variable is among the arguments of the first
distribution? However, not knowing which variable will be the conditioning one, we will solve
this problem for all variables from P at once. This is why we will be interested in sequences for
which any variable may appear among the arguments of the first distribution (naturally, after a
necessary reordering). This property is met by the so-called flexible sequences that, in addition
to a stronger concept of decomposable generating sequences, were already defined in JirouSek
(2011).
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Definition 7.2 A generating sequence 1y, 72, . . ., Tn with structure P = (Ky, K3, ..., K,) is
called flexible if for each u € K(P) there exists a permutation iy, i, ..., i, of 1,2,...,n such
that u € K;, and

T, b, >...Dr, =n Db Dy

In other words, flexible sequences are those which can be reordered in many ways so that
each variable can appear among the arguments of the first distribution. However, this does not
mean that each distribution appears at the beginning of the generating sequence. If this were the
case, then flexible sequences would form a subclass of the so-called perfect sequences (Jirousek
2011) (every distribution from a perfect sequence is a marginal of the represented distribution —
Theorem (10.5) in JirouSek (2011)).

It seems natural that if a generating sequence and its reordering represent the same probability
distribution, they should also induce the same system of structural independencies. In other words,
their structures should be equivalent. This is why we are going to define and study the concept of
structural flexibility as well.

Definition 7.3 A structure P is called flexible if for all u € K (P) there exists its equivalent
reordering P’ such that u appears in the first set of P’.

Let us stress that, similar to the flexibility of generating sequences, the structure flexibility
definition does not require that each set from the structure should appear at the beginning of
an equivalent structure. And yet, we will show that structure flexibility is much stronger than
flexibility for generating sequences; namely, it coincides with decomposability defined by the
well-known running intersection property (RIP) — see the definition below.

Remark 7.4 As already mentioned in Remark 3.12, a structure P of a compositional model defines
an order on the set of the respective variables from K (P). These variables are ordered with respect
to their first appearance in P. There is a strong relationship between special patterns from A (P)
and this partial order. For example, if {u, v, w} € N (P) then there exists a set K; € P such that
{u, v, w} € K; and at least one of u, v, w lies in its R-part. If simultaneously {u, v} & N (P)
then {u, v} € S(K;, P), and, necessarily, w € R(K;, P). Therefore, both u and v have to be
introduced before w in P. Since the system of non-trivial sets A'(P) is one of the characteristics
of the equivalence relation on structures, it means that # and v have to be introduced before w in
every structure equivalent with P (see Theorem 3.10).

Denote N3_»(P) = {{u, v, w} € N(P)|{u,v} & N(P)}. It will follow from Lemma 7.6
and Theorem 7.7 that A3_,(P) = @ for flexible P. First, we will prove that AV3_»(P) = @ is
equivalent to the running intersection property (RIP), which is defined as follows for a structure
P (recall that set K; € P is irreducible in P if R(P, K;) # 0).

Definition 7.5 We say that structure P = (K1, ..., K,) satisfies the running intersection property
(RIP) if for every irreducible set K; € P there exists an irreducible set K; € P such that j < i,
and S(K;, P) C K;.

Lemma 7.6 N3_»(P) = @ iff P satisfies RIP.

Proof First, assume that P = (K1, ..., K,) satisfies RIP and there exists {u, v, w} € N(P)
such that {u, v} € N(P). Let K; be the set for which w € R(P, K;). Then {u, v} € S(K;, P)
(because {u, v} ¢ N(P)), and employing the definition of RIP, we know that there must exist
irreducible K; € P, j < i suchthat {u, v} C K. Since we assume that {u, v} & N'(P), neither of
these two variables may lie in R(P, K;), and therefore {u, v} C S(K;, P), which further implies
the existence of another irreducible K; € P,k < j such that {u, v} C K. This reasoning process
can be endlessly repeated, which contradicts with the fact that the number of the sets in P is finite.
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To prove the opposite implication, i.e. N3_»(P) = ¢} = P satisfies RIP, we will use the
induction on the length of the considered structure n. The assertion is trivial forn = 2: S(K», P) =
KiNK; CKj.

Suppose the assertion holds for all structures of a length smaller than n. This assumption
trivially implies that the assertion also holds for K, reducible, and for K, such that|S(K,, P)| = 1.
Now, we will show that it also holds for irreducible K,, for which |S(K,,, P)| > 2. Denote

v =arg max ){j :v € R(Kj,P)}, (7.1)

veS(K,, P

i.e. v is the variable from S(K,, P) that is introduced last in P. Since K, is irreducible we can
choose an arbitrary w € R(K,, P). Let us show that S(K,, P) € K for which v € R(K;, P).
Consider any u € S(K,,P),u # v. Since u,v € S(K,,P), we see that {u, v, w} € N(P),
and therefore also {u, v} € N(P) (because we assume N3_>(P) = ¢). Therefore, there must
exist K; such that u, v € K;, and at least one of them must lie in R(K;, P). But, neither i < j
(v ¢ KyU...UK;_1becausev € R(K;, P))nori > j (because of (7.1)) and therefore u € K,
which concludes the proof. O

Now, we can prove that the notion of structural flexibility coincides with RIP.
THEOREM 7.7 A structure P is flexible iff it satisfies RIP.

Proof  First, assume that PP does not satisfy RIP, which means N3_,(P) # ¥ due to Lemma 7.6.
Therefore, there exists a triplet {u, v, w} € N(P) such that {u, v} ¢ N (P) in every equivalent
structure, and therefore w cannot appear in the first set of any structure equivalent with P because
u and v have to be introduced first.

To prove the opposite implication of the desired equivalence, we will prove a little bit stronger
assertion: If structure P satisfies RIP then every irreducible set can be moved to the first position
in the structure using two elementary operations: box and constant transpositions. It means that
the resulting structure is equivalent with P.

Let us proceed using the induction on the length of the structure. It is evident that the assertion
holds for a structure consisting of only one set. Now, supposing it holds for all structures of a
length smaller than n we will prove it also holds for structure P = (K1, ..., K,).

If K,, is reducible in P then the assertion holds because of the induction assumption. If it is
irreducible, due to RIP there exists irreducible K j, j < n such that S(K,, P) € K ;. Moreover, if

(Kq, ..., K,) meets RIP then (K1, ..., K,_1) meets RIP, too, and therefore, using the induction
hypothesis, we can find P’ = (K, i»---» Ki, |, Ku), which is the reordering of P (that can be
obtained using only box and constant transpositions) such that K; = K;,. It is evident that

S(K,,P") = S(K,, P). Hence, as shown in Remark 4.8, P’(n ~ 2) can be obtained from P’ by
a sequence of constant transpositions. Since the transposition (2 ~ 1) is always either a box or
a constant transposition (see Remark 4.11), the structure P’(n ~ 2)(2 ~ 1) meets the required
property and can be obtained from P using only box and constant transpositions. (]

Remark 7.8 The reader familiar with decomposable graphs knows that there are many different
ways in which these graphs can be characterized. It follows from the existence of a join tree (Beeri
et al. 1983) that if a sequence meets RIP then it can be reordered into another RIP sequence so
that the new sequence starts with an arbitrarily selected set. From this point of view, the preceding
theorem is not surprising. The originality of the message contained in this assertion is twofold.
For one thing, the respective reordering can be done with only the help of constant and box
transpositions, and for another, RIP is guaranteed by a weaker property, which is the structural
flexibility of a sequence.
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Based on Theorem 7.7 we can immediately conclude the following assertion, which is the
same as in Lemma 12.3. in Jirousek (2011) (notice that for the application of box transposition
by Lemma 6.3 we have to assume that the swapped distributions are consistent).

CorOLLARY 7.9 Let my, ..., mw, be a generating sequence of pairwise-consistent distributions
with flexible structure (K1, ..., K,). Then the generating sequence is flexible.

8. Conclusions

Compositional models provide a tool for efficient representation of multidimensional probability
distributions. Note that an arbitrary probability distribution can be characterized by many proper-
ties. One of them is the system of probabilistic conditional independence statements induced by
this distribution. It means that every compositional model — as a probability distribution — also
induces a system of probabilistic conditional independence statements. A significant part of these
statements is given by the respective model structure, which is the same for all the distributions
represented in the form of compositional models with this structure.

This paper introduces a compositional model structure as a bearer of the information about
these conditional independence statements. The first part of the paper recalls the basic properties
of compositional models relevant to the notion of probabilistic conditional independence. In the
second part, a separation criterion is presented, based on nonexistence of a Z-avoiding trail,
enabling us to read the respective conditional independence statements from the given structure.
It is worth repeating that two different structures may induce the same system of conditional
independence statements; in this case we say they are equivalent. This issue is treated in the
main part of the paper: we present two ways to characterize equivalent structures and describe
transformations converting a given structure into another equivalent one. In the last part of the
paper, we also reveal the impact of these operations on probability distributions represented in
the form of compositional models.

There are many other important questions that are not answered in this paper. First, let us stress
that we dealt only with sequential models. Very interesting and important results concerning struc-
tures of more general (non-sequential) compositional expressions were achieved by Malvestuto
(forthcoming). Nevertheless, even for sequential models some basic questions remained beyond
the scope of this paper. For example: What is the number of structures equivalent with a given one?
How to find a structure corresponding to a given system of conditional independence statements?
And in case a system of conditional independence statements cannot be perfectly represented by
any structure, how to find a structure inducing its maximal subsystem? So, one can see that there
is still an interesting part of compositional model theory open for further research.
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Notes

JK1NK> VK1NK,
L. 7 1

< 712l KK denotes that the distribution 7
1KINK
2

is absolutely continuous with respect

LKINK
1

to distribution 7, 2 which, in our finite setting, means that whenever 2 s positive then

K1NK .
7':2¢ %2 must also be positive.

: 00 _
2. In this paper 5= = 0.
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