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Abstract

Metareasoning has been used as a means for achieving bounded rationality by op-
timizing the tradeoff between the cost and value of the decision making process.
Effective monitoring techniques have been developed to allow agents to stop their
computation at the “right” time so as to optimize the overall time-dependent util-
ity of the decision. However, these methods were designed for a single decision
maker. In this paper, we analyze the problems that arise when several agents solve
components of a larger problem, each using an anytime algorithm. Metareasoning
is more challenging in this case because each agent is uncertain about the progress
made so far by the others. We develop a formal framework for decentralized mon-
itoring of decision making, establish the complexity of several interesting variants
of the problem, and propose solution techniques for each case.

1 Introduction

The challenge of decision making with uncertain information and limited resources has attracted sig-
nificant attention in philosophy, psychology, economics, and artificial intelligence. In the social sci-
ences, the focus has been on developing descriptive theories of human decision making–theories that
explain how people make decisions in the real world, coping with uncertainty and limited amount
of time [6]. Work in artificial intelligence has produced several prescriptive theories and agent ar-
chitectures that can take into account the computational cost of decision making [4, 9, 12, 16, 17].
The idea that the cost of decision making must be factored into the decision making process was in-
troduced by Herbert Simon in the 1950’s. His notion of “satisficing” has inspired research in many
disciplines including AI. Much of the work so far has focused on a single decision maker–work on
bounded rationality in group decision making has been relatively sparse.

To some extent, any approximate reasoning framework could be viewed as a form of bounded ra-
tionality. But unless one can establish some constraints on decision quality, such interpretations
of bounded rationality are not very interesting. It seems more beneficial to define bounded ratio-
nality as an optimization problem constrained by the availability of knowledge and computational
resources. One successful approach is based on decision-theoretic principles used to monitor the
base-level decision procedure, structured as an anytime algorithm. Such decision procedures can
be stopped at any time and provide an approximate solution, whose expected quality improves over
time. It has been shown that the monitoring problem can be treated as a Markov decision process
(MDP) and it can be solved optimally offline and used to optimize decision quality with negligible
run-time overhead [8]. This approach to bounded rationality relies on optimal metareasoning [13].
That is, an agent is considered bounded rational if it monitors and controls its underlying decision
making procedure optimally so as to maximize the comprehensive value of the decision. Additional
formal approaches to bounded rationality have been proposed. For example, bounded optimality
is based on a construction method that yields the best possible decision making program given a
certain agent architecture [12]. The approach implies that a bounded rational agent will not be out-
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performed by any other agent running on the same architecture. This is a stronger guarantee than
optimal metareasoning, but it is also much harder to achieve.

Extending these computational models of bounded rationality to multiagent settings is hard. Even
if one assumes that the agents collaborate with each other–as we do in this paper–there is an added
layer of complication. There is uncertainty about the progress that each agent makes with its local
problem solving process. Thus the metareasoning process inherently involves non-trivial coordina-
tion among the agents. One existing approach for meta-level coordination involves multiple agents
that schedule a series of interrelated tasks [11]. As new tasks arrive, each agent must decide whether
to deliberate on the new information and whether to negotiate with other agents about the new
schedule. Each agent uses an MDP framework to reason about its deliberation process. However,
the coordination across agents is handled by negotiation, not by the MDP policy.

In this paper, we extend optimal metareasoning techniques to collaborative multiagent systems. We
consider a decentralized setting, where multiple agents are solving components of a larger problem
by running multiple anytime problem solving algorithms concurrently. The main challenge is for
each individual agent to decide when to stop deliberating and start taking action based on its own
partial information. In some settings, agents may be able to communicate and reach a better joint
decision, but such communication may not be free. We propose a formal model to study these
questions and show that decentralized monitoring of anytime computation can be reduced to the
problem of solving a decentralized MDP (Dec-MDP) [3]. Different monitoring strategies correspond
to different types of Dec-MDPs with different computational complexity. Finally, we evaluate the
performance of the approach on some decentralized decision making domains.

2 Decentralized Metareasoning

We focus in this paper on a multiagent setting in which a group of agents is engaged in collaborative
decision making. Each agent solves a component of the overall problem using an anytime algorithm.
While there is uncertainty about future solution quality, it increases with computation time according
to some probabilistic performance profile. The purpose of metareasoning is to monitor the progress
of the anytime algorithms and decide when to stop deliberation.
Definition 1. The decentralized monitoring problem (DMP) is defined by a tuple
<Ag,Q,A, P, U,CL, CG, T > such that:

• Ag is a set of agents.
• Q1, Q2, ..., Qn are sets of discrete quality levels for agents 1..n. At each step t, we denote

the vector of agent qualities by ~q t, or more simply by ~q, where qi ∈ Qi. Components of ~q t

are qualities for individual agents. We denote the quality for agent i at time t by qti .
• ~q 0 is a joint quality at the initial step, known to all agents.
• A is a set of metalevel actions available to each agent: “continue”, “stop”, “monitorL”,

and “monitorG”. The actions monitorL and monitorG represent “monitor locally” and
“monitor globally” respectively.

• T is a finite horizon representing the maximum number of time steps in the problem.
• Pi is the transition model for the “continue” action for agent i. We will simply use no-

tation P when i is implied by the context. For all i, t ∈ {1..T − 1}, qti ∈ Qi, and
qt+1
i ∈ Qi, P (qt+1

i |qti) ∈ [0, 1]. Furthermore, Σqt+1
i ∈Qi

P (qt+1
i |qti) = 1. We as-

sume that the transitions of any two agents i and j are independent of each other, that
is, P (qt+1

i |qti , qtj) = P (qt+1
i |qti).

• U(~q, t) is a utility function that represents the value of solving the overall problem with
quality vector ~q at time t.

• CL andCG are the costs of the local monitoring and global monitoring actions respectively.

Each agent solves a component of the overall problem using an anytime algorithm. Unless a “stop”
action is taken by one of the agents, all the agents continue to deliberate for up to T time steps. It is
often useful to consider a special class of utility functions defined below.

Although the framework in this paper will apply to all DMPs, we are motivated by problems where
the utility decreases as a function of time, but increases as a function of quality, and the transition
model specifies that quality monotonically increases with each time step. Thus, agents must decide
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whether to accept the current solution quality or continue deliberation, which will result in a higher
solution quality but also a higher cost of time.

At each time step, agents decide which option to take, to “continue”, “stop”, or “monitor” globally or
locally. If all the agents choose to “continue”, then the time step is incremented and solution quality
transitions according to P . If any agent chooses to “stop”, then all agents are instructed to cease
computation before the next time step, and the utility U(~q, t) of the current solution is taken as the
final utility. If an agent chooses “monitorL”, then a cost of CL is subtracted from the utility (for each
agent that chooses monitorL). If any agent chooses “monitorG”, a single cost of CG is subtracted
from the utility. After an agent chooses to monitor, it must then choose whether to continue or stop,
at the same time step.

Agents are assumed to know the initial quality vector ~q 0. An agent has no knowledge about quality
in later time steps, unless a monitoring action is taken. The “monitorL” action monitors the local
quality; when agent i takes the “monitorL” action at time t it obtains the value of qti . However, it
still does not know any component of ~q t

−i. A “monitorG” action results in communication amongall
the agents, after which they all obtain the global quality ~q t.

3 Local Monitoring

We start with the restricted case in which CG = ∞, thus no global monitoring occurs. Each agent
must decide whether to continue its anytime computation, stop the entire decision making process
immediately, or to monitor its progress locally at a cost CL, and then decide.

Complexity of local monitoring We have analyzed several scenarios involving local monitoring.
When CL = 0, each agent should choose to monitor locally on every step, since doing so is free.
We show that even the simple case where CL = 0, CG = ∞, and number of agents is fixed, the
problem of finding a joint optimal policy is NP-hard, and that with CL = k, the DMP problem is
NP-complete.
Lemma 1. The problem of finding an optimal solution for a DMP with a fixed number of agents,
|Ag|, CL = 0 and CG =∞ is NP-hard.

The proof is based on reduction to DMP from Decentralized Detection [15]. Note that making local
monitoring decisions in this case is trivial, but the overall stopping problem is still NP-hard.

We further show that when local monitoring has an arbitrary cost, the DMP problem is NP-complete.
Theorem 1. The problem of finding an optimal solution for a DMP with CL > 0 and CG = ∞ is
NP-complete.

The NP-completeness proof is based on a reduction of the DMP problem to a transition-independent
Dec-MDP, known to be NP-complete [7].

Myopic greedy solution We first derive a simple polynomial solution to the local monitoring
problem based on a greedy approach. According to this approach, each agent continues its local
computation as long as the marginal value of continued problem solving is positive. It extends a
similar approach that proved useful in monitoring single-agent deliberation [17, 18]. In our multia-
gent setting, the greedy approach considers the other agents to be part of the environment, assuming
that they always continue, and never monitor or terminate. We describe the technique from a single
agent’s point of view, assuming that each agent is executing this algorithm simultaneously. The
approach is myopic in the sense that it does not take into account future meta-level decisions about
continuing/stopping the computation.

We first extend the single step probabilistic performance profile of each agent, into a multistep per-
formance profile Pr, where ∆t ∈ [1..T−1] is some fixed duration. This extension is straightforward.
Definition 2. A dynamic local performance profile of agent i, Pri(q′i|qi,∆t), denotes the probability
of agent i getting a solution of quality q′i by continuing the algorithm for time interval ∆t when the
currently available solution has quality qi.

Because of the transition independence among the agents, the global multistep performance profile
is simply the product of the local ones.
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Definition 3. A myopic greedy estimate of the expected value of computation (MEVC) for agent i
continuing ∆t steps at time t, given its local solution quality qti , is:

MEVC(qti , t,∆t) =
∑
~q t

Pr(~q t|qti , t)
( ∑
~q t+∆t

Pr(~q t+∆t|~q t,∆t)U(~q t+∆t, t+ ∆t)− U(~q t, t)
)

The first probability is the expectation of the current global state, given the local state, and the second
probability is the distribution of future global quality given the current global quality. Thus, MEVC
is the difference between the expected utility after continuing for ∆t more steps, and the current
expected utility from the point of view of agent i.

When CL = 0, agents could first monitor their local quality and then continue computation as long
as MEVC > 0 for ∆t = 1, and repeat this assessment in each step. An less myopic approach is to
evaluate MEVC(qti , t,∆t) for every ∆t and continue as long as it is positive for some ∆t.

When CL > 0, it is beneficial to postpone local monitoring. When the decision is to continue the
computation, it is necessary to decide how many steps should be performed before the next local
monitoring will occur. We call this policy a cost-sensitive monitoring policy.
Definition 4. A cost-sensitive monitoring policy, Πi(qi, t), is a mapping from time step t and local
quality qi to a monitoring decision (∆t,m) such that ∆t represents the additional amount of time
to allocate to the anytime algorithm, and m is a binary variable that represents whether to monitor
at the end of this time allocation or to stop without monitoring.

It is relatively easy to extend the dynamic programming approach from [8] to this multiagent case
and derive local monitoring policies that factor the cost of local monitoring.

Modeling the other agents The myopic greedy solution optimizes each agent’s decision based
on its local information, but it does not account for the fact that the other agents are also decision
makers who monitor the situation. In fact, it is often beneficial to rely on other agents to stop the
deliberation process. For example, consider a situation in which the stopping time depends highly
on the completion of a critical task performed by agent j. It is better to let agent j–the only one who
can monitor the progress made with the critical task–make the stopping decision.

To better address the interaction between the agents, we can exploit the fact that the local monitoring
problem can be reduced to solving a transition-independent Dec-MDP (TI-Dec-MDP), based on the
construction used to prove Theorem 1. Solving a TI-Dec-MDP is much harder than implementing
the above myopic greedy approach, but it provides an optimal solution. Several algorithms have been
developed in recent years for solving TI-Dec-MDPs. Among them, the coverage set algorithm [2]
and the bilinear programming approach [10] are the most effective ones. In our experiments, we used
the bilinear programming approach, which works particularly well and is easy to implement. We
first convert the problem to a transition independent Dec-MDP, and then prune “impossible” state-
actions, for example inconsistent states in which t0i > ti. Then we convert the resulting problem into
a bilinear program and use the efficient succesive approximation algorithm developed by Petrik and
Zilberstein [10]. Although bilinear problems are NP-complete in general, in practice performance
depends on the sparsity of the reward structure, which the algorithm exploits.

4 Global Monitoring

Next, we examine the case where agents can perform global monitoring by communicating with
each other (imposing cost to the network). We analyze the case where CL = 0 and CG = k,
where k is some constant. We show that this problem is NP-complete as well, by reducing it to a
Dec-MDP-Comm-Sync [1]. A Dec-MDP-Comm-Sync is a transition-independent Dec-MDP with
an additional property: after each step, agents can decide whether to communicate or not. If they do
not communicate, agents continue onto the next step as with a typical transition-independent Dec-
MDP. If any agent decides to communicate, then all the agents exchange knowledge and learn the
global state. However, a joint cost of CG is assessed for communicating. Agents form joint plans
after communication. The portion of the joint plan formed by agent i after step t is denoted πt

i .
Theorem 2. The DMP problem with CL = 0 and some constant CG is NP-complete.

The proof of NP-hardness is similar to Lemma 1. To show that the problem is in NP, we reduce the
problem to that of finding the solution of a Dec-MDP-Comm-Sync [1]. In particular, the following
Dec-MDP-Comm-Sync can be created from a DMP with CL = 0:
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• F i is a new “terminal” state for each time step for agent i.
• Si is the set of {qti} levels for agent i; the global state space is

∏
i(S

i ∪ {F i})
• Ai is { “continue”, “terminate” }; the joint action set is

∏
iA

i

• The transition model:
P (qti , continue, qt+1

i ) = P (qt+1
i |qti); P (qt1i , continue, qt2i ) = 0, ∀(t2 6= t1 + 1)

P (qti , terminate, fi) = 1, ∀qti ∈ Si.
• The reward function R(~qt, {Ai}) = U(~q, t) if Ai = terminate for some i; 0 otherwise.
• The horizon T is the same as T from the DMP.
• The cost of communication is CG.

It is straightforward to verify that this reduction is polynomial. Having represented the DMP prob-
lem as a Dec-MDP-Comm-Sync, we can use solution techniques from the literature to solve the
problem [1]. One effective myopic approach to making communication (i.e., global monitoring)
decisions is based on computing the net value of communication actions. The net value is based
on the value of information obtained (the increase in expected utility of the new policy) minus the
associated cost (CG). An improvement of this myopic approach that considers postponing commu-
nication as well as the fact that other agents may initiate communication has shown to produce very
good results [1]. We extended this technique to compute policies for global monitoring.

5 Experiments

Figure 1: Expected utility vs. cost of time of non-
myopic local monitoring. The costs of monitoring
for the plots (top to bottom) are .5, 4, 7, and 10. As
cost of time increases, utility decreases. The slope
is more negative for higher costs of monitoring.

We experimented with two different decentral-
ized decision making scenarios. The first sce-
nario involved a decentralized maximum flow
problem where two entities must each solve a
maximum flow problem in order to supply dis-
parate goods to a customer. To estimate the
transition model P in the DMP, we profiled the
performance of an anytime maximum flow al-
gorithm (based on Ford Fulkerson [5], through
Monte Carlo simulation). The flow network
was constructed randomly on each trial, with
each edge capacity in the network drawn from
a uniform distribution. The second exam-
ple was the Rock Sampling domain, borrowed
from the POMDP planning literature [14]. In
this planning problem, two rovers must each
form a plan to sample rocks, maximizing the
joint value of the samples. However, the loca-
tion of the rocks are not known until runtime,
and thus the plans cannot be constructed until
the rovers are deployed. We used the HSVI algorithm for POMDPs as the planning tool [14]. HSVI
is an anytime algorithm whose performance (error bound) is constructed and reported at runtime.

For each of these examples, we conducted separate experiments for local and global monitoring,
using CG = ∞ in local monitoring and CL = 0 in global monitoring. For local monitoring, the
decentralized anytime problem was converted to a Dec-MDP and solved using the bilinear program.
For global monitoring, the problem was converted to a Dec-MDP-Comm-Sync and solved. We
also ran experiments based on a direct extension of [8], where each agent chooses its cost-sensitive
monitoring policy by treating the other agents as if they were part of the environment.

Due to space limitation, we only present a small sample of the results. Figure 1 plots value versus the
cost of time (K) for 4 different costs of local monitoring on the Rock Sampling problem. The dashed
line (lowest) represents a cost of monitoring of 10. The dotted-dashed line (highest) represents a cost
of monitoring of 0.5. As expected, for a constant cost of time, a higher cost of monitoring results in a
lower quality solution. The drop-off is monotonically decreasing and roughly linear, with higher cost
of monitoring resulting in a more negative slope. The extreme end points of these graphs represent
simple cases. As one proceeds leftwards, the cost of time goes down, ultimately reaching the point
at which the agents should always continue the computation until completion and no monitoring
decisions are needed. As one proceeds rightwards, the cost of time grows, ultimately reaching the
point at which agents should stop on the first step and again, no monitoring decisions are needed.
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The monitoring approach produces a policy whose value changes roughly linearly between these
two extreme points, suggesting that it factors effectively the costs of time and monitoring.

6 Conclusion
We analyze in this paper the problem of coordination of deliberation interruption among multiple
agents, when each agent solves a component of the overall decision problem using an anytime
algorithm. To optimize the overall decision quality, agents need to monitor their own progress
and occasionally monitor the global progress by entire team. We show that the local and global
monitoring problems can be reduced to stochastic planning problems that can be represented as
different variants of Dec-MDPs. We use these reductions to establish the computational complexity
of monitoring and in order to solve the problem in two realistic scenarios. The results show that
existing Dec-MDP solution techniques can be used effectively for decentralized meta-level control
of deliberation processes in multiagent settings.

Currently, only the myopic greedy approach to local monitoring works well for more than two
agents. Extending these techniques, particularly the bilinear solver, to settings that involve more
than two agents remain an important challenge for future work. We are also interested in solving
the monitoring problem when local or global solution quality are only partially observable. General
Dec-POMDP algorithms that we are currently developing offer promising solution methods for this
more general case.
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