Supra-Bayesian Approach to Merging of Incomplete and Incompatible Data
 Theoretical and practical results

Vladimíra Sečkárová

Charles University in Prague Institute of Information Theory and Automation

$$
28.3 .2011
$$

Situation

Assumptions

- finite number of sources
- given knowledge: probabilities, data, ...

Task: find the optimal merger of given information

Same domains, probability information

Vladimíra Sečkárová
Supra-Bayesian Approach to Merging of Incomplete and Incompatible Data

Different domains (but neighbors), different forms of given information

Vladimíra Sečkárová

Final merger

$$
\begin{equation*}
o_{h(.)}=\frac{1}{n+\sum_{1}^{s} \lambda_{j}(\text { data })}+\frac{\sum_{1}^{s} \lambda_{j}(\text { data }) g_{j}(.)}{n+\sum_{1}^{s} \lambda_{j}(\text { data })} \tag{1}
\end{equation*}
$$

- n - no. of realizations of a random vector described by the sources $(<\infty)$
■ s - no. of sources $(<\infty)$
- λ_{j} Lagrange multipliers - expresses how important the information given by $j^{t h}$ source is (based on constraints distance between given distribution and unknown distribution)

Bayes rule

$■ \mathbf{X}=\left(X_{1}, \ldots, X_{s}\right)$ observations - random variables

- $f(\mathbf{X} \mid \theta)$ - model
- assumption: X_{j} (conditionally) independent identically distributed, $j=1, \ldots, s$:

$$
f(\mathbf{X} \mid \theta)=\prod_{1}^{s} f\left(X_{j} \mid \theta\right)
$$

- $q(\theta)$ - a prior pdf
- $\pi(\theta \mid \mathbf{X})$ - a posterior pdf

$$
\pi(\theta \mid \mathbf{X}) \propto q(\theta) f(\mathbf{X} \mid \theta)=q(\theta) \prod_{1}^{s} f\left(X_{j} \mid \theta\right)
$$

Supra-Bayes: add an unknown parameter

- s sources, (\mathbf{X}, θ) - random vector
- assumption: θ has finite no. of realizations
- denote n^{*} no. of realizations of (\mathbf{X}, θ)

■ in this case, the Lagrange multipliers $\lambda_{j}, j=1, \ldots, s$ do not depend on θ, because:

$$
\text { Lagrangian }=\operatorname{Entropy}(\pi(h \mid D))-\int \sum_{1}^{n^{*}}[\ldots]+\ldots
$$

■ final merger:

$$
\begin{equation*}
o_{h(\mathbf{X}, \theta)}=\frac{1}{n^{*}+\sum_{1}^{s} \lambda_{j}}+\frac{\sum_{1}^{s} \lambda_{j} g_{j}(\mathbf{X}, \theta)}{n^{*}+\sum_{1}^{s} \lambda_{j}} \tag{2}
\end{equation*}
$$

Situation－ 2 sources

■ sources vs．observations： 2 conditionally independent sources
－form of given information we need from sources：
－first step：$X_{1} \rightarrow \delta\left(X_{1}-x_{1}\right)$
－second step：model + prior pdf are needed：

$$
\delta\left(X_{1}-x_{1}\right) f\left(X_{1}, X_{2} \mid \Theta\right) q(\Theta)
$$

－analogically for $2^{\text {nd }}$ source
■ but summation over all realizations is not equal to $1 \rightarrow$ normalization
－can we suppose $\delta\left(X_{j}-x_{j}\right) q(\theta)$ was given？under which assumptions？
－there are many possible situations，remember，sources have to be neighbors（mutual or fix one source and create its neighbors）

2 sources: mutual neighbors, same domain

$$
o_{h\left(X_{1}, X_{2}, \Theta\right)}=\frac{1+\sum_{1}^{2} \lambda_{j} \delta\left(X_{j}-x_{j}\right) f\left(X_{1}, X_{2} \mid \Theta\right) q(\Theta)}{n^{*}+\lambda_{1}+\lambda_{2}}=\bullet
$$

A) if there appears a realization of X_{j} such that $\delta\left(X_{j}-x_{j}\right)=1$, then evaluate:

$$
\frac{\left(n^{*}+\sum_{1}^{2} \lambda_{j}\right)^{O} h\left(X_{1}, X_{2}, \Theta\right)-1}{\sum_{1}^{2} \lambda_{j} \delta\left(X_{j}-x_{j}\right)} \approx \pi\left(\Theta \mid X_{1}, X_{2}\right)
$$

B) if $\delta\left(X_{j}-x_{j}\right)=0 \forall j$ then:

$$
\bullet=f\left(X_{1}, X_{2} \mid \Theta\right) q(\Theta)\left(\frac{\frac{1}{f\left(X_{1}, X_{2} \Theta\right) q(\Theta)}+0}{n^{*}+\lambda_{1}+\lambda_{2}}\right)
$$

since situation B) will certainly occur, we need to bring more assumptions:

- $f\left(X_{1}, X_{2} \mid \Theta\right)>0 \rightarrow f\left(X_{1} \mid \Theta\right)>0, f\left(X_{2} \mid \Theta\right)>0$
- $q(\Theta)>0$
then we get

$$
=f\left(X_{1}, X_{2} \mid \Theta\right) q(\Theta) K(\Theta)
$$

we want $K($.$) to be independent from \Theta$, so we will try:

- $q(\Theta) \sim \operatorname{Uni}($.
- $f\left(X_{1}, X_{2} \mid \Theta\right)$ properly flat
+ earlier assumptions:
■ Θ has finite no. of realizations

Other possibilities of given information

- $1^{\text {st }}$ source: $\delta\left(X_{1}-x_{1}\right) f\left(X_{1}, X_{2} \mid \Theta\right) q(\Theta)$, $2^{\text {nd }}$ source: $\delta\left(X_{2}-x_{2}\right) q(\Theta)$
- second one is the neighbor of the first one
- extension of information for $2^{\text {nd }}$ source: ${ }^{0} h\left(X_{1}, X_{2} \mid \Theta\right) \delta\left(X_{2}-x_{2}\right) q(\Theta)$
$o_{h\left(X_{1}, X_{2}, \Theta\right)}=\frac{\ldots+\lambda_{2} \delta\left(X_{2}-x_{2}\right) q(\Theta)^{O} h\left(X_{1}, X_{2} \mid \Theta\right) \frac{f\left(X_{1}, X_{2} \mid \Theta\right)}{f\left(X_{1}, X_{2} \mid \Theta\right)}}{n^{*}+\lambda_{1}+\lambda_{2}}$
$=f\left(X_{1}, X_{2} \mid \Theta\right) q(\Theta)\left(\frac{\frac{1}{f\left(X_{1}, X_{2} \mid \Theta\right) q(\Theta)}+\lambda_{1} \delta\left(X_{1}-x_{1}\right)+\lambda_{2} \delta\left(X_{2}-x_{2}\right) c}{n^{*}+\lambda_{1}+\lambda_{2}}\right)$
- the fraction $\frac{o_{h(\Theta)}}{q(\Theta)}=c^{*}$ does not depend on θ

- and we get the same situation as before (2 mutual neighbors)
- if no. of sources >2 :

■ we need at least one source giving model + prior pdf,

- others will be its/their neighbors: giving model or prior pdf or just $\delta\left(X_{j}-x_{j}\right)$

Choice of the distance between given and unknown distribution，boundary on the distance

■ we needed to find the optimal posterior pdf because the optimal merger is $\mathrm{E}_{\pi(h \mid D)}(h \mid D)$ ，h is unknown distribution
－we used maximum entropy principle with constraints on distances between given and unknown distribution
－we considered：
■ expected Kerridge inaccuracy：
$\beta \geq \operatorname{EK}\left(g_{j}, h\right) \geq \operatorname{Entropy}\left(g_{j}\right) \geq 0$
■ expected Kullback－Leibler divergence：

$$
\beta \geq \operatorname{ED}_{K L}\left(g_{j}, h\right) \geq \mathrm{D}_{K L}\left(g_{j},{ }^{O} h\right) \geq 0
$$

■＂reversed＂expected Kerridge inaccuracy：

$$
\beta \geq \operatorname{EK}\left(h, g_{j}\right)
$$

Example - a dice (first type Kerridge inaccuracy is used)

By sampling from $\{1, \ldots, 6\}$ (with particular probabilities) I got following results:

- for a fair dice:

■ works well for $\beta=1.71$ - entropy of a fair dice

- one side is preferred $h=(7,1,1,1,1,1) / 12$:

■ min: 0.54 - ok/ok (results for small/large no. of sources)
■ max: 2.46 - ok/k.o.
■ mean: 2.16 - k.o./k.o.
■ two sides are preferred $h=(4,4,1,1,1,1) / 12$:
■ min: 1.1 - k.o./k.o.
■ max: 2.48 - ok/ok
■ mean: 2.02 - ok/ok
■ three sides are preferred $h=(3,3,3,1,1,1) / 12$:
■ min: 1.39 - k.o./k.o.
■ max: 2.49 - k.o./ok
■ mean: 1.94 - ok/ok

Thanks for the attention.

