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Situation

Assumptions

finite number of sources

given knowledge: probabilities, data, ...

Task: find the optimal merger of given information
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Same domains, probability information
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Different domains (but neighbors), different forms of given
information
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Final merger

Oh(.) =
1

n +
∑s

1 λj(data)
+

∑s
1 λj(data)gj(.)

n +
∑s

1 λj(data)
(1)

n - no. of realizations of a random vector described by the
sources (< ∞)

s - no. of sources (< ∞)

λj Lagrange multipliers – expresses how important the
information given by j th source is (based on constraints –
distance between given distribution and unknown distribution)
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Bayes rule

X = (X1, . . . ,Xs) observations - random variables

f (X|θ) - model

assumption: Xj (conditionally) independent identically
distributed, j = 1, . . . , s:

f (X|θ) =
s∏
1

f (Xj |θ)

q(θ) - a prior pdf

π(θ|X) - a posterior pdf

π(θ|X) ∝ q(θ)f (X|θ) = q(θ)
s∏
1

f (Xj |θ)
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Supra-Bayes: add an unknown parameter

s sources, (X, θ) - random vector

assumption: θ has finite no. of realizations

denote n∗ no. of realizations of (X, θ)

in this case, the Lagrange multipliers λj , j = 1, . . . , s do not
depend on θ, because:

Lagrangian = Entropy(π(h|D))−
∫ n∗∑

1

[. . .] + . . .

final merger:

Oh(X, θ) =
1

n∗ +
∑s

1 λj
+

∑s
1 λjgj(X, θ)

n∗ +
∑s

1 λj
(2)
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Situation – 2 sources

sources vs. observations: 2 conditionally independent sources

form of given information we need from sources:

first step: X1 → δ(X1 − x1)
second step: model + prior pdf are needed:
δ(X1 − x1)f (X1,X2|Θ)q(Θ)
analogically for 2nd source

but summation over all realizations is not equal to 1 →
normalization

can we suppose δ(Xj − xj)q(θ) was given? under which
assumptions?

there are many possible situations, remember, sources have to
be neighbors (mutual or fix one source and create its
neighbors)
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2 sources: mutual neighbors, same domain

Oh(X1,X2,Θ) =
1 +

∑2
1 λjδ(Xj − xj)f (X1,X2|Θ)q(Θ)

n∗ + λ1 + λ2
= •

A) if there appears a realization of Xj such that δ(Xj − xj) = 1,
then evaluate:

(n∗ +
∑2

1 λj)
Oh(X1,X2,Θ)− 1∑2

1 λjδ(Xj − xj)
≈ π(Θ|X1,X2)

B) if δ(Xj − xj) = 0 ∀j then:

• = f (X1,X2|Θ)q(Θ)

(
1

f (X1,X2|Θ)q(Θ) + 0

n∗ + λ1 + λ2

)
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since situation B) will certainly occur, we need to bring more
assumptions:

f (X1,X2|Θ) > 0 → f (X1|Θ) > 0, f (X2|Θ) > 0

q(Θ) > 0

then we get
= f (X1,X2|Θ)q(Θ)K (Θ)

we want K (.) to be independent from Θ, so we will try:

q(Θ) ∼ Uni(.)

f (X1,X2|Θ) properly flat

+ earlier assumptions:

Θ has finite no. of realizations
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Other possibilities of given information

1st source: δ(X1 − x1)f (X1,X2|Θ)q(Θ),
2nd source: δ(X2 − x2)q(Θ)

second one is the neighbor of the first one

extension of information for 2nd source:
Oh(X1,X2|Θ)δ(X2 − x2)q(Θ)

Oh(X1,X2,Θ) =
. . . + λ2δ(X2 − x2)q(Θ)Oh(X1,X2|Θ) f (X1,X2|Θ)

f (X1,X2|Θ)

n∗ + λ1 + λ2

= f (X1,X2|Θ)q(Θ)

(
1

f (X1,X2|Θ)q(Θ) + λ1δ(X1 − x1) + λ2δ(X2 − x2)c

n∗ + λ1 + λ2

)
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the fraction
Oh(Θ)
q(Θ) = c∗ does not depend on θ

we also can find out that
Oh(X1,X2|θ)
f (X1,X2|Θ) =

Oh(X1,X2,Θ)
Oh(Θ)

f (X1,X2|Θ) = c

and we get the same situation as before (2 mutual neighbors)

if no. of sources > 2 :

we need at least one source giving model + prior pdf,
others will be its/their neighbors: giving model or prior pdf or
just δ(Xj − xj)
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Choice of the distance between given and unknown
distribution, boundary on the distance

we needed to find the optimal posterior pdf because the
optimal merger is Eπ(h|D)(h|D), h is unknown distribution

we used maximum entropy principle with constraints on
distances between given and unknown distribution

we considered:

expected Kerridge inaccuracy:
β ≥ EK(gj , h) ≥ Entropy(gj) ≥ 0
expected Kullback-Leibler divergence:
β ≥ EDKL(gj , h) ≥ DKL(gj ,

O h) ≥ 0
“reversed” expected Kerridge inaccuracy:
β ≥ EK(h, gj)
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Example - a dice (first type Kerridge inaccuracy is used)

By sampling from {1, . . . , 6} (with particular probabilities) I got
following results:

for a fair dice:
works well for β = 1.71 – entropy of a fair dice

one side is preferred h = (7, 1, 1, 1, 1, 1)/12:
min: 0.54 – ok/ok (results for small/large no. of sources)
max: 2.46 – ok/k.o.
mean: 2.16 – k.o./k.o.

two sides are preferred h = (4, 4, 1, 1, 1, 1)/12:
min: 1.1 – k.o./k.o.
max: 2.48 – ok/ok
mean: 2.02 – ok/ok

three sides are preferred h = (3, 3, 3, 1, 1, 1)/12:
min: 1.39 – k.o./k.o.
max: 2.49 – k.o./ok
mean: 1.94 – ok/ok
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Thanks for the attention.
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Supra-Bayesian Approach to Merging of Incomplete and Incompatible Data


