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Abstract. Partial differential equations with discrete (concentrated) state-
dependent delays are studied. The existence and uniqueness of solutions with

initial data from a wider linear space is proven first and then a subset of

the space of continuously differentiable (with respect to an appropriate norm)
functions is used to construct a dynamical system. This subset is an analogue

of the solution manifold proposed for ordinary equations in [H.-O. Walther,

The solution manifold and C1-smoothness for differential equations with state-
dependent delay, J. Differential Equations, 195(1), (2003) 46–65]. The exis-

tence of a compact global attractor is proven. As far as applications are con-
cerned, we consider the well known Mackey-Glass-type equations with diffu-

sion, the Lasota-Wazewska-Czyzewska model, and the delayed diffusive Nichol-

son’s blowflies equation, all with state-dependent delays.

1. Introduction. The partial differential equations (PDEs) with delays have at-
tracted a lot of attention during the last decades as many processes of the real
world (like an automatically controlled furnace, bi-directional associative memory
(BAM) neural networks, reaction-diffusion processes) can be described by such kind
of equations. Studying these equations is based on the well-developed approaches to
the ordinary differential equations (ODEs) with delays [14, 8, 1] and PDEs without
delays [11, 12, 19, 18]. Under certain assumptions both types of equations describe
a kind of dynamical systems that are infinite-dimensional, see [2, 35, 7] and refer-
ences therein; see also [36, 5, 6, 3] and to the monograph [43] that are very close to
this work.

In many evolution systems arising in applications the presented delays are fre-
quently state-dependent (SDDs). The theory of such equations, especially the
ODEs, is rapidly developping and many deep results have been obtained up to
now (see e.g. [37, 38, 39, 20, 22, 40] and also the survey paper [15] for details and
references). The underlying main mathematical difficulty of the theory of PDEs
with SDDs lies in the fact that the functions describing state-dependent delays are
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not Lipschitz continuous on the space of continuous functions - the main space,
on which the classical theory of equations with delays is developed. This implies
that the corresponding initial value problem (IVP) is not generally well-posed in
the sense of J. Hadamard [11, 12].

The partial differential equations with state-dependent delays were first studied
in [26] (the case of distributed delays, weak solutions), [16] (mild solutions, infinite
discrete delay), and [27] (weak solutions, finite discrete and distributed delays). An
alternative approach to the PDEs with discrete SDDs is proposed in [29].

This paper is a continuation of the work [30] and its goal is to study the approach
used for ODEs with SDDs [37, 38, 15] in the case of PDEs. The main idea lies in
finding a wider space Y ⊃ X such that a solution u : [a, b]→ Y be a Lipschitz func-
tion (with respect to a weaker norm of Y ), and constructing a dynamical system on
a subset of the space C([a, b];Y ). It should be emphasized that the dynamical sys-
tem is constructed on a metric space that is nonlinear. More precisely, the existence
and uniqueness of solutions with initial data from that wider linear space is proven
first and then a subset of the space of continuously differentiable (with respect to an
appropriate norm) functions is used for constructing the aforementioned dynamical
system. This subset is an analogue of the solution manifold proposed in [38], see
also [15]. We use the same class of non-local in space variables nonlinear PDEs as
in [30].

As far as applications and motivations are concerned we consider the well known
Mackey-Glass-type equations with diffusion (a model in physiology), the Lasota-
Wazewska-Czyzewska model in hematology and the delayed diffusive Nicholson’s
blowflies equation in population dynamics. The approach proposed here allows to
study the models with state-dependent delays, which seems to be more realistic
comparing with the constant delay. See examples and remark 1 below for more
details.

The paper is organized as follows. The section 2 is devoted to the formulation
of the model and examples. The proof of the existence and uniqueness of (strong)
solutions for initial functions from a Banach space forms a main part of the section
3. In the section 4, an evolution operator St is constructed and its asymptotic
properties in different functional spaces are investigated. The dissipativeness is
obtained in a Banach space, while the existence of a global attractor is proven on
a smaller metric space (the solution manifold). The choice of this smaller space is
different from that proposed in [30].

2. The model with discrete state-dependent delay and preliminaries.
Consider the following non-local partial differential equation with a discrete state-
dependent delay η

∂

∂t
u(t, x) +Au(t, x) + du(t, x) = b ([Bu(t− η(ut), ·)](x)) ≡

(
F1(ut)

)
(x), x ∈ Ω,

(1)
where A is a densely-defined self-adjoint positive linear operator with domain
D(A) ⊂ L2(Ω) and compact resolvent, which means that A : D(A) → L2(Ω) gen-
erates an analytic semigroup, Ω ⊂ Rn0 is a smooth bounded domain, B : L2(Ω)→
L2(Ω) denotes a bounded operator that will be defined later, b : R→ R stands for
a Lipschitz map, d ∈ R, d ≥ 0, and the function η : C([−r, 0];L2(Ω))→ [0, r] ⊂ R+

denotes a state-dependent discrete delay. Let C ≡ C([−r, 0];L2(Ω)). Norms defined
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on L2(Ω) and C are denoted by || · || and || · ||C , respectively, and 〈·, ·〉 stands for
the inner product in L2(Ω). As usually, ut ≡ ut(θ) ≡ u(t+ θ) for θ ∈ [−r, 0].

Examples. As the first application we propose the delayed diffusive equation
(see (1)) with Mackey-Glass type nonlinearity given by b(v) = βv (1 + vm)−1, β ∈
R,m ≥ 1. It is the diffusive model of Hematopoiesis (blood cell production) with
the state-dependent delay and −A being the Laplace operator with the Neumann
boundary conditions. The model of Hematopoiesis when u does not depend on the
spatial variable x ∈ Ω was first proposed by Mackey and Glass [21]. For the case
of constant delay η(ut) ≡ τ > 0 see, e.g. [9, 41] and also [44] for n0 = 1 and
further references. One can easily check that the nonlinearity b(v) = βv (1 + vm)−1

is bounded and globally Lipschitz provided m = 2k, k ∈ N.

As another application we can consider the diffusive Nicholson blowflies equation
with state-dependent delays [30], i.e. the equation (1) where −A is the Laplace
operator with the Dirichlet boundary conditions, Ω ⊂ Rn0 is a bounded domain
with a smooth boundary, the nonlinear (birth) function b is given by b(v) = p ·ve−v.
For the constant delay see, e.g. [34] and also [44] for n0 = 1.

The third application is the Lasota-Wazewska-Czyzewska model in hematology
covering problems involving blood cell pathologies, where the nonlinearity is given
by b(v) = p · vke−v, p > 0, k ≥ 1. For the case of constant delay ODE see, e.g. [17].
In our case the operator A is as in the Mackey-Glass equation.

Remark 1. The operator B may for example be of the following forms (linear
operators)

[Bv](x) ≡
∫

Ω

v(y)f̃(x, y)dy, x ∈ Ω, (2)

or even simpler

[Bv](x) ≡
∫

Ω

v(y)f(x− y)`(y)dy, x ∈ Ω, (3)

where f : Ω→ R is a smooth function and ` ∈ C∞0 (Ω). In the last case the nonlinear
term in (1) is of the (nonlocal) form(

F1(ut)
)
(x) ≡ b

(∫
Ω

u(t− η(ut), y)f(x− y)`(y)dy

)
, x ∈ Ω. (4)

�
It is interesting to mention that the presence of the operator B in (1) (in our ex-

ample it is a nonlocal operator) has not only mathematical but also strong biological
motivations as discussed in [4] (see also a survey [10] for relevant references).

Consider the equation (1) with the initial condition

u|[−r,0] = ϕ (5)

and let

H ≡
{
ϕ ∈ C([−r, 0];D(A−

1
2 )) | ϕ(0) ∈ D(A

1
2 )
}
. (6)

Let further
||ϕ||H ≡ max

s∈[−r,0]
||A− 1

2ϕ(s)||+ ||A 1
2ϕ(0)||

be a norm defined on the space H and D(Aα) denote the domain of the operator
Aα. In the sequel the following assumptions will play an important role.
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(H1.η) The discrete delay function η : H → [0, r] is such that

∃Lη > 0, ∃q ≥ 0 such that ∀ϕ,ψ ∈ H ⇒

|η(ϕ)− η(ψ)| ≤ Lη
(
q||A 1

2 (ϕ(0)− ψ(0))||2 +

∫ 0

−r
||A− 1

2 (ϕ(θ)− ψ(θ))||2 dθ
) 1

2

(7)

(H.B) The following Lipschitz property of the operator B holds.

∃LB > 0 such that ∀u, v ∈ D(A−
1
2 )⇒ ||Bu−Bv|| ≤ LB ||A−

1
2 (u− v)|| (8)

Remark 2. The assumption (8) concerning the operator B implies that B is com-
pact (the case where B is the identity is excluded). This smoothing effect of the
operator B is important in our study of discrete state-dependent delays. As a nat-
ural example, under the assumption that for all (almost all) x ∈ Ω⇒ f(· −x)`(·) ∈
D(A

1
2 ) and u ∈ D(A−

1
2 ), the term of the form (3) (a convolution) implies that

| 〈u, f(· − x)`(·)〉| ≤ ||A− 1
2u|| ||A 1

2 f(· − x)`(·)||,

which gives(∫
Ω

∣∣ ∫
Ω

u(y)f(y − x)`(y)dy
∣∣2 dx) 1

2

≤ ||A− 1
2u||

(∫
Ω

||A 1
2 f(· − x)`(·)||2 dx

) 1
2

.

Hence, the property (H.B) (see (8)) holds with LB ≡
(∫

Ω
||A 1

2 f(· − x)`(·)||2 dx
) 1

2

.

The same arguments hold (with LB ≡
(∫

Ω
||A 1

2 f̃(x, ·)||2 dx
) 1

2

) for a more general

term of the form (2).
The same motivation (a smoothing effect due to a nonlocal term) is used in

the integral term in (7). The same convolution type example, as just discussed, can
serve as a natural example of this effect, i.e. for any Lipschitz function g : R→ [0, 1]
consider

η(ϕ) =

∫ 0

−r
g

(∫
Ω

ϕ(θ, y)`(y) dy

)
dθ.

One can easily check that

|η(ϕ)−η(ψ)| ≤ Lg
∫ 0

−r
|〈ϕ(θ)−ψ(θ), `〉| dθ ≤ Lg

∫ 0

−r
||A− 1

2 (ϕ(θ)−ψ(θ))|| · ||A 1
2 `|| dθ

≤ Lη
(∫ 0

−r
||A− 1

2 (ϕ(θ)− ψ(θ))||2 dθ
) 1

2

, with Lη ≡ Lg||A
1
2 `||r 1

2 .

From the point of view of applications (the biological ones mentioned in the intro-
duction) it is also natural to have the nonlinearity and delay function of the nonlocal
type (for a detailed discussion of the nonlocality of the delay terms see, e.g. [4] and
a survey [10] and references therein). �

Let now the following space

L ≡

{
ϕ ∈ C([−r, 0];D(A−

1
2 )) | sup

s6=t

{
||A− 1

2 (ϕ(s)−ϕ(t))||
|s− t|

}
<+∞; ϕ(0) ∈ D(A

1
2 )

}
,

(9)
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with the natural norm

||ϕ||L ≡ max
s∈[−r,0]

||A− 1
2ϕ(s)||+ sup

s 6=t

{
||A− 1

2 (ϕ(s)− ϕ(t))||
|s− t|

}
+ ||A 1

2ϕ(0)|| (10)

be defined. For any segment [a, b] ⊂ R (c.f. (9)) and any Lipschitz-on-[a, b] function
ϕ, let

|||ϕ|||[a,b] ≡ sup

{
||A− 1

2 (ϕ(s)− ϕ(t))||
|s− t|

: s 6= t; s, t ∈ [a, b]

}
(11)

denote its Lipschitz constant and let |||ϕ||| ≡ |||ϕ|||[−r,0]. Then the following lemma
holds.

Lemma 2.1. Let the assumptions (H1.η) and (H.B) hold (see (7), (8)) and let the
function b : R → R be Lipschitz. Then any two functions ϕ ∈ L, ψ ∈ H (with H
and L defined in (6) and (9)) the nonlinearity F satisfies

||F1(ϕ)− F1(ψ)|| ≤ LF1

[
|||ϕ|||

](
q ||A1/2(ϕ(0)− ψ(0))||+ ||A−1/2(ϕ− ψ)||C

)
,

(12)
where

LF1 [`] ≡ LbLB
√

2 max
{

1; `Lη max{1;
√
r}
}

(13)

and LF1
[`] is used in (12) with

` = Lϕ ≡ |||ϕ||| ≡ sup

{
||A−1/2(ϕ(s)− ϕ(t))||

|s− t|
: s 6= t; s, t ∈ [−r, 0]

}
.

Proof of Lemma 2.1. Using the Lipschitz property of b and B (see (H.B)), it
follows that

||F1(ϕ)− F1(ψ)||2 =

∫
Ω

|b([Bϕ](−η(ϕ), x))− b([Bψ](−η(ψ), x))|2 dx ≤

≤ L2
b

∫
Ω

|[Bϕ](−η(ϕ), x)− [Bψ](−η(ψ), x)|2 dx

= L2
b ||[Bϕ](−η(ϕ), ·)− [Bψ](−η(ψ), ·)||2 ≤

≤ L2
bL

2
B ||A−1/2 {ϕ(−η(ϕ))− ψ(−η(ψ))± ϕ(−η(ψ))} ||2 ≤

≤ 2L2
bL

2
B

(
||A−1/2 {ϕ(−η(ϕ))− ϕ(−η(ψ))} ||2 + ||A−1/2 (ϕ− ψ) ||2C

)
.

Next, ϕ ∈ L implies that there exists Lϕ ≡ |||ϕ||| > 0, (see (10),(11)) such that

||A−1/2(ϕ(s1)− ϕ(s2))|| ≤ Lϕ|s1 − s2|, ∀s1, s2 ∈ [−r, 0]. (14)

Hence, (14) and (H1.η) give

||F1(ϕ)− F1(ψ)||2 ≤
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≤ 2L2
bL

2
B

[
L2
ϕL

2
η

(
q ||A1/2(ϕ(0)− ψ(0))||2 +

∫ 0

−r
||A− 1

2 (ϕ(θ)− ψ(θ))||2 dθ
)

+

+ ||A− 1
2 (ϕ− ψ) ||2C

]
≤

≤ 2L2
bL

2
B

[
L2
ϕL

2
η

(
q ||A1/2(ϕ(0)− ψ(0))||2 + r ||A− 1

2 (ϕ− ψ)||2C dθ
)

+

+ ||A− 1
2 (ϕ− ψ) ||2C

]
≤

≤ 2L2
bL

2
B max

{
1;L2

ϕL
2
η max{1; r}

} [
q ||A1/2(ϕ(0)− ψ(0))||2 + ||A− 1

2 (ϕ− ψ) ||2C
]
.

The last estimate and using the formulas
√

max{|a|; |b|} = max{
√
|a|;
√
|b|} and√

a2 + b2} ≤ |a|+ |b| give (12), (13), which completes the proof.

3. The existence and uniqueness of solutions. As in [30] we need the following

Definition 3.1. A vector-function u(t) ∈ C([−r, T ];D(A−1/2)) ∩ C([0, T ];
D(A1/2)) ∩ L2(0, T ;D(A)) with derivative u̇(t) ∈ L∞(0, T ;D(A−1/2)) is a solution
to the problem defined by (1) and (5) on [0, T ] if

(a) u(θ) = ϕ(θ) for θ ∈ [−r, 0];
(b) ∀v ∈ L2(0, T ;L2(Ω)) such that v̇ ∈ L2(0, T ;D(A−1)) and v(T ) = 0⇒

−
∫ T

0

〈u(t), v̇(t)〉 dt+

∫ T

0

〈A1/2u(t), A1/2v(t)〉 dt =

= 〈ϕ(0), v(0)〉+

∫ T

0

〈F1(ut)− d · u(t), v(t)〉 dt. (15)

Now we prove the following theorem on the existence and uniqueness of solutions.

Theorem 3.2. Let the assumptions (H1.η) and (H.B) hold and let the function
b : R → R be Lipschitz and bounded, i.e. |b(s)| ≤ Mb for all s ∈ R. Let further
ϕ ∈ L be a given initial condition. Then the problem defined by (1) and (5) has a
unique solution on any time interval [0, T ] such that u̇ ∈ L2(0, T ;L2(Ω)).

Remark 3. Notice that ϕ does not assume ϕ ∈ L2([−r, 0];D(A)). However, the
definition of a solution implies that

ut ∈ L2([−r, 0];D(A)), ∀t ≥ r. (16)

�

Proof. We follow the proof of Theorem 1 in [30]. Notice that the assumption (H1.η)
is slightly more general than the assumption (H.η) in [30]. This implies some changes
in the proof of the uniqueness of solutions.

Let {ek}∞k=1 denote an orthonormal basis of L2(Ω) such that Aek = λkek, 0 <
λ1 < . . . < λk → +∞ and consider the Galerkin approximate solution um =
um(t, x) =

∑m
k=1 gk,m(t)ek of order m such that{

〈u̇m +Aum + dum − F1(umt ), ek〉 = 0,
〈um(θ), ek〉 = 〈ϕ(θ), ek〉, ∀θ ∈ [−r, 0]

(17)
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∀k = 1, . . . ,m, gk,m ∈ C1(0, T ;R)∩L2(−r, T ;R) with ġk,m(t) absolutely continuous.
The system (17) is a system of (ordinary) differential equations in Rm with

a concentrated (discrete) state-dependent delay for the unknown vector function
U(t) ≡ (g1,m(t), . . . , gm,m(t)) (for the corresponding theory see [38, 39] and also a
recent review [15]).

The key difference between equations with state-dependent and state-independent
(concentrated) delays is that the first type of equations is not well-posed in the space
of continuous (initial) functions. To get a well-posed initial value problem, it is bet-
ter [38, 39, 15] to use a smaller space of Lipschitz continuous functions or even a
smaller subspace of C1([−r, 0];Rm).

The condition ϕ ∈ L implies that the function U(·)|[−r,0] ≡ Pmϕ(·), which defines
initial data, is Lipschitz continuous as a function from [−r, 0] to Rm. Here Pm is
the orthogonal projection onto the subspace span {e1, . . . , em} ⊂ L2(Ω). Hence, we
can apply the theory of ODEs with discrete state-dependent delay (see e.g. [15]) to
get the local existence and uniqueness of solutions to (17).

Next, we will get an a priory estimate to prove the continuation of solutions um

to (17) on any time interval [0, T ] and then use it for the proof (by the method of
compactness, see [19]) of the existence of strong solutions to (1) and (5). To that
end, multiply the first equation in (17) by λkgk,m and sum for k = 1, . . . ,m to get

1

2

d

dt
||A1/2um(t)||2 + ||Aum(t)||2 + d · ||A1/2um(t)||2 = 〈PmF (umt ), Aum(t)〉 ≤

≤ 1

2
||PmF (umt )||2 +

1

2
||Aum(t)||2.

As the function b is bounded, ||F (umt )||2 ≤M2
b |Ω| (here |Ω| ≡

∫
Ω

1 dx), which gives

d

dt
||A1/2um(t)||2 + ||Aum(t)||2 ≤M2

b |Ω|. (18)

Integrating (18) with respect to t and using the relationships ϕ(0) ∈ D(A1/2),
um(0) = Pmϕ(0) ∈ D(A1/2), ||A1/2um(0)|| = ||A1/2Pmϕ(0)|| ≤ ||A1/2ϕ(0)||, we get
an a priory estimate

||A1/2um(t)||2 +

∫ t

0

||Aum(τ)||2 dτ ≤ ||A1/2ϕ(0)||2 +M2
b |Ω|T, ∀m,∀t ∈ [0, T ].

(19)

The above relationship (19) means that

{um}∞m=1 is a bounded set in L∞(0, T ;D(A1/2)) ∩ L2(0, T ;D(A)).

Using this fact and (17), it follows that

{u̇m}∞m=1 is a bounded set in L∞(0, T ;D(A−1/2)) ∩ L2(0, T ;L2(Ω)).

Hence, the family {(um; u̇m)}∞m=1 is a bounded set in

Z1 ≡
(
L∞(0, T ;D(A1/2)) ∩ L2(0, T ;D(A))

)
×

×
(
L∞(0, T ;D(A−1/2)) ∩ L2(0, T ;L2(Ω))

)
. (20)

Therefore, there exist a subsequence {(uk; u̇k)} and an element (u; u̇) ∈ Z1 such
that

{(uk; u̇k)} *-weak converges to (u; u̇) in Z1. (21)
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The proof that any *-weak limit is a strong solution is standard. To prove the
property u(t) ∈ C([0, T ];D(A1/2)), we use the well-known (see also [18, thm. 1.3.1])

Theorem 3.3. (Proposition 1.2 in [31]). Let V denote a dense Banach space that is
continuously embedded in a Hilbert space X and let X = X∗ so that V ↪→ X ↪→ V ∗.
Then the Banach space Wp(0, T ) ≡ {u ∈ Lp(0, T ;V ) : u̇ ∈ Lq(0, T ;V ∗)} (here
p−1 + q−1 = 1) is contained in C([0, T ];X).

In our case X = D(A1/2), V = D(A), V ∗ = L2(Ω), p = q = 1/2.

Now we prove the uniqueness of solutions. Using the fact that ϕ ∈ L, the
definition 3.1 of a solution v, and v̇(t) ∈ L∞(0, T ;D(A−1/2)) (see (21)), it follows
that for any such a solution v and any T > 0, there exists Lv,T > 0, such that

||A−1/2(v(s1)− v(s2))|| ≤ Lv,T |s1 − s2|, ∀s1, s2 ∈ [−r, T ]. (22)

In the light of (11), let Lv,T ≡ |||v|||[−r,T ].

Consider any two solutions u and v of (1), (5) (not necessarily with the same
initial function). The standard variation-of-constants formula u(t) = e−Atu(0) +∫ t

0
e−A(t−τ)F (uτ ) dτ and the estimate ||Aαe−tA|| ≤

(
α
t

)α
e−α (see e.g. [7, (1.17),

p.84]) give

||A1/2(u(t)− v(t))||

≤ e−λ1t||A1/2(u(0)− v(0))||+
∫ t

0

||A1/2e−A(t−τ)|| ||F (uτ )− F (vτ )|| dτ

≤ e−λ1t||A1/2(u(0)− v(0))||+
∫ t

0

(
1/2

t− τ

)1/2

e−1/2 ||F (uτ )− F (vτ )|| dτ, (23)

as ||A1/2e−A(t−τ)|| ≤
(

1/2
t−τ

)1/2

e−1/2 and similarly,

||A−1/2(ut − vt)||C ≤ ||A−1/2(u0 − v0)||C +

∫ t

0

||F (uτ )− F (vτ )|| dτ.

The last estimate and (23) give (just the case when q = 1 is shown for the purpose
of clarity)

||A1/2(u(t)− v(t))||+ ||A−1/2(ut − vt)||C ≤ e−λ1t||A1/2(u(0)− v(0))||+

+ ||A−1/2(u0 − v0)||C +

∫ t

0

{
1 + (2e(t− τ))−1/2

}
||F (uτ )− F (vτ )|| dτ. (24)

It follows, from Lemma 2.1, that

||F (ut)− F (vt)|| ≤ LF1,v,T

(
q ||A1/2(u(t)− v(t))||+ ||A−1/2(ut − vt)||C

)
, (25)

where LF1,v,T is defined in the same way as LF1
in (13), just with ` = Lv,T instead

of Lϕ - see (13) and (22).

LF1,v,T ≡ LF1

[
Lv,T

]
≡ LbLB

√
2 max

{
1;Lv,TLη max{1;

√
r}
}
. (26)

It should be emphasized how the Lipschitz constant Lv,T ≡ |||v|||[−r,T ] of a strong
solution v is taken into account in (26) (see (22) and (11)).
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Let

g(t) ≡ ||A1/2(u(t)− v(t))||+ ||A−1/2(ut − vt)||C .
Then the relationships (24) and (25) lead to the following estimate

g(t) ≤ g(0) +

∫ t

0

{
1 + (2e(t− τ))−1/2

}
LF1,v,T · g(τ) dτ

Lemma 3.4 (Gronwall). Let u, α ∈ C[a, b], β(t) ≥ 0, β is integrable on [a, b] and

u(t) ≤ α(t) +

∫ t

a

β(τ)u(τ) dτ, a ≤ t ≤ b

Then

u(t) ≤ α(t) +

∫ t

a

β(τ)α(τ) exp

{∫ t

τ

β(s) ds

}
dτ, a ≤ t ≤ b

Moreover, if α is non-decreasing, then

u(t) ≤ α(t) exp

{∫ t

a

β(s) ds

}
, a ≤ t ≤ b.

It follows, from the above lemma and equality
∫ t

0
(t− τ)−1/2dτ = 2t1/2, that

g(t) ≤ g(0) exp

{
LF1,v,T

∫ t

0

{
1 + (2e(t− s))−1/2

}
ds

}
≤

≤ g(0) exp

{
LF1,v,T

(
t+

√
2t

e

)}
,

which implies, ∀t ∈ [0, T ], that

||A1/2(u(t)− v(t))||+ ||A−1/2(ut − vt)||C ≤

≤ EF1,v,T

(
||A1/2(u(0)− v(0))||+ ||A−1/2(u0 − v0)||C

)
, (27)

where

EF1,v,T ≡ exp

{
LF1,v,T ·

(
T +

√
2T

e

)}
, (28)

see (26) for the definition of LF1,v,T ≡ LF1

[
Lv,T

]
. This proves the uniqueness of

the solution to (1) and (5), and completes the proof of the theorem.

4. Asymptotic properties of solutions. This section is devoted to studies of
the asymptotic behavior of solutions in different functional spaces. We define first
(in a standard way) the evolution semigroup St : L → L (the space L is defined in
(9)) by the formula

Stϕ ≡ ut, t ≥ 0, (29)

where u(t) is a unique solution to the problem (1) and (5) (see definition 3.1).

The estimate (27) means the continuity of the evolution operator St in the norm
of the space H (see (6)), i.e.

||Stϕ− Stψ||H ≤ EF1,v,T ||ϕ− ψ||H for all t ∈ [0, T ]. (30)
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The aim now is to get a more precise estimate, e.g. the continuity of St in
the norm of the space L (see (9), (10)). Consider the definition of the Galerkin
approximate solution (see (17)). It gives

||A−1/2(u̇m(t)− v̇m(t))|| ≤ ||A1/2(um(t)− vm(t))||+ d||A−1/2(um(t)−
− vm(t))||+ ||F1(umt )− F1(vmt )||

and Lemma 2.1 implies

||A−1/2(u̇m(t)− v̇m(t))|| ≤ (1 + d+ LF1){||A1/2(um(t)− vm(t))||+

+ ||A−1/2(umt − vmt )||C}.
An analogous estimate for a solution to the problem (1) and (5), can be obtained

from (21) and the following

Theorem 4.1. [45, Chapter V, Theorem 9, p.125] Let X be a Banach space. Then
any *-weak convergent sequence {wk}∞n=1 ∈ X∗ *-weak converges to an element
w∞ ∈ X∗ and ‖w∞‖X∗ ≤ lim infn→∞ ‖wn‖X∗ .

More precisely,

ess supt∈[0,T ]||A−1/2(u̇(t)− v̇(t))|| ≤ (1 + d+ LF1) sup
t∈[0,T ]

{||A1/2(u(t)− v(t))||+

+ ||A−1/2(ut − vt)||C}
The last estimate and relationship (27) imply

ess supt∈[0,T ]||A−1/2(u̇(t)− v̇(t))|| ≤

≤ (1 + d+ LF1)EF1,v,T

(
||A1/2(u(0)− v(0))||+ ||A−1/2(u0 − v0)||C

)
(31)

Hence, see (11),

|||u− v|||[0,T ] ≤ (1 + d+ LF1)EF1,v,T

(
||A1/2(u(0)− v(0))||+ ||A−1/2(u0 − v0)||C

)
From that and (27), it follows that

||ut − vt||L ≤ (2 + d+ LF1)EF1,v,T ||u0 − v0||L, ∀t ∈ [0, T ], (32)

which finally means that for any T ≥ 0 there exists a constant CT > 0 such that
∀t ∈ [0, T ] it gives

||ut − vt||L = ||Stϕ− Stψ||L ≤ CT ||ϕ− ψ||L, ∀ϕ,ψ ∈ L (33)

The last inequality means the continuity of the evolution operator St in the norm
of the space L (see (29) and compare with (30)).

Remark 4. It should be noted that the evolution operator and, more generally,
the time-shift is not a (strongly) continuous mapping in the norm of the space L
(see (9)). This can be illustrated by the following simple (scalar) example.
Consider the space

Lip ([−r, T ];R) ≡
{
v : [−r, T ]→ R : sup

{
|v(s)− v(t)|
|s− t|

, s 6= t; s, t ∈ [−r, T ]

}
<∞

}
and analogously define the space Lip ([−r, 0];R) with the natural norm

||v||Lip ≡ max
θ∈[−r,0]

|v(θ)|+ sup

{
|v(s)− v(t)|
|s− t|

, s 6= t; s, t ∈ [−r, 0]

}
.
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The (strong) continuity of the time-shift means that

∀v ∈ Lip ([−r, T ];R) and ∀t ∈ [0, T ] =⇒ lim
h→0
||vt+h − vt||Lip = 0. (34)

Obviously, when t = 0 one considers h → 0+, while for t = T , the case h → 0−

should be investigated.
To prove the claim, we must show that (34) does not hold, i.e.

∃v ∈ Lip ([−r, T ;R) and ∃t0 ∈ [0, T ] for which lim
h→0
||vt0+h − vt0 ||Lip 6= 0. (35)

Thus, consider the case t0 = 0, h→ 0+ and the function

v(t) ≡

{
0, t ∈ [−r, 0]

t, t ∈ (0, T ]
.

It can be seen that vt0 = v0 ≡ 0 and

vt0+h = vt0+h(θ) =

{
0, θ ∈ [−r,−h]

h+ θ, θ ∈ (−h, 0]
.

Hence, ||vt0+h − vt0 ||Lip = ||vt0+h||Lip = h+ 1 and finally lim
h→0+

||vt0+h − vt0 ||Lip =

lim
h→0+

(h + 1) = 1 6= 0, which means that (34) does not hold. In the space L, we

would proceed analogously. �

Remark 5. In the same way as in the previous remark one can show that the
time-shift is not a (strongly) continuous mapping in the topology of L∞(−r, 0).

One could consider the function ṽ(t) ≡

{
0, t ∈ [−r, 0]

1, t ∈ (0, T ]
and t0 = 0 to show that

lim
h→0+

||ṽh − ṽ0||L∞(−r,0) = 1 6= 0. By the way, ṽ = d
dtv, where, as usually, the

time-derivative is understood in the sense of distributions. �

The above remarks show that despite of the existence and uniqueness of solutions
in the space L and even strong continuity of the evolution operator St in the norm
of L (see (33)), the pair (St;L) does not form a dynamical system since St is not
strongly continuous as a mapping of time variable.

The methods, developed for ordinary delay equations in [38] suggest to restrict
our considerations to a smaller subset of the space of Lipschitz functions. In this pa-
per we follow this suggestion and consider the evolution operator St on the following
subset of L
X ≡

{
ϕ ∈ C1([−r, 0];D(A−1/2)) such that

ϕ(0) ∈ D(A1/2)) and ϕ̇(0) +Aϕ(0) + dϕ(0) = F1(ϕ)
}
⊂ L. (36)

Here the equality ϕ̇(0) + Aϕ(0) + dϕ(0) = F1(ϕ) is understood as an equality in
D(A−1/2).

Remark 6. The set X is an analogue of the solution manifold introduced in [38]
for the case of ODEs with state-dependent delays. �

To show that the set X is invariant under the evolution operator St, we first have
to establish an additional smoothness property of the solutions of problem (1), (5).
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Lemma 4.2. For any ϕ ∈ C1([−r, 0];D(A−1/2)) such that ϕ(0) ∈ D(A1/2)), the
solution to (1), (5) (which is given by Theorem 3.2) has the property (c.f. Theo-
rem 3.3 and Theorem 3.2)

u̇ ∈ C([0, T ];D(A−1/2)), ∀T > 0. (37)

Remark 7. We do not assume ϕ(0) ∈ D(A), just ϕ(0) ∈ D(A1/2), so we cannot
directly use [24, Theorem 3.5, p.114].

Proof of Lemma 4.2. By Theorems 3.3, 3.2, for any ϕ ∈ C1([−r, 0];D(A−1/2))
such that ϕ(0) ∈ D(A1/2)), there exists a unique solution u(t) ∈ C([−r, T ];
D(A−1/2)) ∩C([0, T ];D(A1/2)). This property and Lemma 2.1 then imply the con-
tinuity of the function

p(t) ≡ F1(ut) ∈ C([0, T ];L2(Ω)). (38)

Consider the following auxiliary linear system without delay{
v̇(t) +Av(t) + dv(t) = p(t), t ≥ 0,
v(0) = ϕ(0) ∈ D(A1/2)

(39)

In the same way as in (17), the Galerkin approximate solution vm = vm(t, x) =∑m
k=1 gk,m(t)ek of order m to (39) can be defined such that{

〈v̇m +Avm + dvm − p(t), ek〉 = 0, t ≥ 0,
〈vm(0), ek〉 = 〈ϕ(0), ek〉, ∀k = 1, . . . ,m.

(40)

where gk,m ∈ C1(0, T ;R) ∩ L2(−r, T ;R) and ġk,m(t) is absolutely continuous.
The difference between approximate solutions um and vm lies in that vm are

solutions just to linear system (40). So, for any two approximate solutions vn and
vm (solutions to (40) of different orders n and m), one has gk,n(t) ≡ gk,m(t), which
is denoted by gk(t).

Multiply (40) by λkgk and sum for k = n+ 1, ..., n+ p (p is any positive integer)
to get

〈v̇n+p(t)− v̇n(t), A(vn+p(t)− vn(t))〉+ ||A(vn+p(t)− vn(t))||2+

+ d〈vn+p(t)− vn(t), A(vn+p(t)− vn(t))〉 = 〈(Pn+p−Pn)p(t), A(vn+p(t)− vn(t))〉

It should be recalled that, see the proof of Theorem 3.2, Pm is the orthogonal
projection onto the subspace span {e1, . . . , em} ⊂ L2(Ω). Hence,

1

2

d

dt
||A 1

2 (vn+p(t)−vn(t))||2 + ||A(vn+p(t)−vn(t))||2 +d||A 1
2 (vn+p(t)−vn(t))||2 ≤

≤ ||(Pn+p − Pn)p(t)|| · ||A(vn+p(t)− vn(t))|| ≤ 1

2
||(Pn+p − Pn)p(t)||2+

+
1

2
||A(vn+p(t)− vn(t))||2

which gives

d

dt
||A 1

2 (vn+p(t)− vn(t))||2 + ||A(vn+p(t)− vn(t))||2 ≤ ||(Pn+p − Pn)p(t)||2.
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Integrating the last estimate results (∀t ∈ [0, T ]) in

||A 1
2 (vn+p(t)− vn(t))||2 +

∫ t

0

||A(vn+p(τ)− vn(τ))||2 dτ ≤

≤ ||A 1
2 (vn+p(0)− vn(0))||2 +

∫ t

0

||(Pn+p − Pn)p(τ)||2 dτ ≤

≤ ||(Pn+p − Pn)A
1
2ϕ(0))||2 +

∫ T

0

||(Pn+p − Pn)p(τ)||2 dτ.

Summing up, the above estimate, the fact that ϕ(0) ∈ D(A1/2)), the strong
convergence ||I − Pn|| → 0 for n→∞, and (38) imply that

the sequence {vn}∞n=1 is a Cauchy sequence in C([0, T ];D(A
1
2 )). (41)

Now our goal is to show that the sequence {v̇n}∞n=1 is a Cauchy sequence in

C([0, T ];D(A−1/2)). So, multiply first (40) by λ
− 1

2

k to get λ
− 1

2

k ġk(t) = −λ
1
2

k gk(t)−
dλ
− 1

2

k gk(t)+ 〈λ−
1
2

k p(t), ek〉. This gives λ−1
k (ġk(t))2 ≤ 3λk(gk(t))2 +3d2λ−1

k (gk(t))2 +

3|〈λ−
1
2

k p(t), ek〉|2. The sum for k = n+ 1, ..., n+ p reads

||A− 1
2 (v̇n+p(t)− v̇n(t))||2 ≤ 3||A 1

2 (vn+p(t)− vn(t))||2+

+ 3d2||A− 1
2 (vn+p(t)− vn(t))||2 +

3

λn+1
||(Pn+p − Pn)p(t)||2 ≤

≤ 3

(
1 +

d2

λ2
n+1

)
||A 1

2 (vn+p(t)− vn(t))||2 +
3

λn+1
||I − Pn||2||p(t)||2.

The last estimation together with (41) give that

the sequence {v̇n}∞n=1 is a Cauchy sequence in C([0, T ];D(A−
1
2 )). (42)

Thus, there exists a unique solution v(t) (v ≡ limn→∞ vn) to the linear system (39),

which satisfies v ∈ C([0, T ];D(A
1
2 )) and v̇ ∈ C([0, T ];D(A−

1
2 )).

On the other hand, the nonlinear delay system (1), (5) with the initial function
ϕ has also a unique solution. From the construction of p(t) (see (38)), it follows
that u(t) ≡ v(t) for all t ∈ [0, T ], which gives (37) and completes the proof of
Lemma 4.2.

Lemma 4.2 particularly shows that the set X, defined by (36), is invariant under
the evolution operator St (see (29)). This fact allows to define an evolution operator
(denoted again by St) St : X → X in the same way as in (29). Now, if the natural
norm

||ϕ||X ≡ max
s∈[−r,0]

||A−1/2ϕ(s)||+ max
s∈[−r,0]

||A−1/2ϕ̇(s)||+ ||A1/2ϕ(0)||

on X is taken into account, then Theorem 3.2, Lemma 4.2, and Theorem 3.3 give
the continuity of St with respect to t in the norm of X. Hence, (St;X) defines a
dynamical system.

Now we will pay attention to the long-time asymptotic behavior of the con-
structed evolution semigroup St : X → X.

Theorem 4.3. Using the above notation and under the assumptions of Theo-
rem 3.2, the dynamical system (St, X) is dissipative. If, in addition, q = 0 in
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(H1.η), then (St, X) possesses a compact global attractor A, which is a bounded set
in the space C1([−r, 0];D(A−1/2)) ∩ C([−r, 0];D(Aα)), α ∈ ( 1

2 , 1).

Proof of Theorem 4.3. It will be shown first that (St, X) is a dissipative dynam-
ical system. To that end, the below proposition is needed.

Lemma 4.4. [30, Lemma 1] Let all the assumptions of Theorem 3.2 hold and let α ∈
( 1

2 , 1). Then there exists a bounded subset BVα of the space C1([−r, 0];D(A−
1
2 )) ∩

C([−r, 0];D(Aα)), which absorbs any strong solution to the problem (1) and (5) for
any initial function ϕ ∈ L.

Second, to apply the classical theorem on the existence of a global attractor (see,
for example [2, 35, 7]), we show that (St, X) is asymptotically compact. Consider
therefore any solution u(t) to the problem (1) and (5) with ϕ ∈ BVα as an initial
function. We will show that for any δ > r > 0 and any T > δ the set U ≡ {ut =
Stϕ |ϕ ∈ BVα, t ∈ [δ, T ]} is relatively compact in X.

Recall that the set BVα is a ball in C1([−r, 0];D(A−1/2))∩C([−r, 0];D(Aα)) (for
more details see [30]) and notice that, by Corollary 4 from [32], the set BVα is rela-
tively compact in C([−r, 0];D(A−1/2)) (see also [32, lemma 1]). It remains to show
that {u̇(t) |ϕ ∈ BVα, t ∈ [δ − r, T ]} is equi-continuous in C([δ − r, T ];D(A−1/2)).

Theorem 4.5. [24, Corollary 4.3.3 and Theorem 4.3.5]. Let A be an infinitesimal
generator of an analytic semigroup {T (t)}t≥0. If f ∈ L1((0, T );Y ) is locally Hölder
continuous on (0, T ], then for every x ∈ Y the initial value problem

u̇(t) = Au(t) + f(t), t > 0; u(0) = x

has a unique solution u. If f ∈ Cθ([0, T ];Y ), then for every δ > 0, Au ∈ Cθ([δ, T ];Y )
and u̇ ∈ Cθ([δ, T ];Y ).

Here Cθ([0, T ];Y ) denotes the family of all Hölder continuous functions on [0, T ]
with the exponent θ ∈ (0, 1). In this case, Y = L2(Ω).

In order to apply Theorem 4.5 to our case, we have to show that p(t) = F1(ut) ∈
Cθ([δ − r, T ];L2(Ω)) (c.f. (38),(39)). Therefore, consider t ∈ [δ − r, T ] and

||p(t+ h)− p(t)|| = ||F1(ut+h)− F1(ut)|| ≤

≤ LF1
[`BVα

] max
s∈[−r,0]

||A−1/2(u(t+ h+ s)− u(t+ s))|| ≤ LF1
[`BVα

] `BVα
|h|

where LF1 [`BVα] is the constant defined in Lemma 2.1 with `BVα such that |||ψ||| ≤
`BVα ∀ψ ∈ BVα (the existence of such `BVα follows from Theorem 4.1). Here, q = 0
is used.

The last inequality shows that p : [δ − r, T ] → L2(Ω) is Lipschitz continuous,
which is the situation to which Lemma 4.4 can be applied. It should also be noted
that the family {p(t)}, for all initial ϕ ∈ BVα, is uniformly Lipschitz, i.e. all the
Lipschitz constants are lower or equal to L ≡ LF1 [`BVα ]·`BVα . Then by Theorem 4.1,
it is guaranteed (see the proof) that the family {u̇(t) |ϕ ∈ BVα, t ∈ [δ − r, T ]} is
uniformly Hölder continuous, and thus equi-continuous in C([δ − r, T ];L2(Ω)).

Theorem 4.6. [32, lemma 1] Let B be a Banach space. A set F of C([0, T ];B) is
relatively compact if and only if

(i) F (t) ≡ {f(t) : f ∈ F} is relatively compact in B, 0 < t < T ,
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(ii) F is uniformly equicontinuous, i.e. ∀ε > 0,∃η such that ||f(t2) − f(t1)||B ≤
ε,∀f ∈ F,∀0 ≤ t1 ≤ t2 ≤ T such that |t2 − t1| ≤ η

Applying Theorem 4.6 completes the proof of Theorem 4.3.

In all the applications considered above (Mackey-Glass-type equations with dif-
fusion, the Lasota-Wazewska-Czyzewska model in hematology and the delayed dif-
fusive Nicholson’s blowflies equation) the functions b are bounded and globally Lip-
schitz, so for any delay function η satisfying (H1.η) and any (nonlocal) operator
B, satisfying (H.B) (as discussed in Remark 2), the conditions of Theorem 3.2 and
Theorem 4.3 are satisfied. As a result, we conclude that the initial value problem (1)
and (5) is well-posed in X and the dynamical system (St, X) has a global attractor
(Theorem 4.3).
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Dunod, Paris, 1969.

[20] T. Krisztin, A local unstable manifold for differential equations with state-dependent delay,
Discrete Contin.Dyn. Syst., 9 (2003), 933–1028.

[21] L. Glass and M. C. Mackey, Oscillation and chaos in physiological control system, Science,

197 (1977), 287–289.
[22] J. Mallet-Paret, R. D. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-

differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear

Anal., 3 (1994), 101–162.
[23] A. D. Myshkis, “Linear Differential Equations with Retarded Argument,” 2nd edition, Nauka,

Moscow, 1972.

[24] A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential Equations,”
Springer-Verlag, New York, 1983.

[25] A. V. Rezounenko, On singular limit dynamics for a class of retarded nonlinear partial dif-
ferential equations, Matematicheskaya fizika, analiz, geometriya, 4 (1997), 193–211.

[26] A. V. Rezounenko and J. Wu, A non-local PDE model for population dynamics with state-

selective delay: local theory and global attractors, Journal of Computational and Applied
Mathematics, 190 (2006), 99–113.

[27] A. V. Rezounenko, Partial differential equations with discrete and distributed state-dependent

delays, Journal of Mathematical Analysis and Applications, 326 (2007), 1031–1045. (see also
detailed preprint, March 22, 2005, arXiv:math/0503470).

[28] A. V. Rezounenko, On a class of P.D.E.swith nonlinear distributed in space and time state-

dependent delay terms, Mathematical Methods in the Applied Sciences,, 31 (2008), 1569–
1585.

[29] A. V. Rezounenko, Differential equations with discrete state-dependent delay: uniqueness and

well-posednessin the space of continuous functions, Nonlinear Analysis: Theory, Methods and
Applications, 70 (2009), 3978–3986.

[30] A. V. Rezounenko, Non-linear partial differential equations with discrete state-dependent
delays in a metric space, Nonlinear Analysis: Theory, Methods and Applications, 73 (2010),

1707–1714; (see detailed Preprint, April 15, 2009, arXiv:0904.2308).

[31] R. E. Showalter, “Monotone Operators in Banach Space and Nonlinear Partial Differential
Equations,” AMS, Mathematical Surveysand Monographs, 49 1997.

[32] J. Simon, Compact sets in the space Lp(0, T ;B), Annali di Mat. Pura ed Appl., 146 (1987),
65–96.

[33] J. W. H. So, J. H. Wu and X. F. Zou, A reaction diffusion model for a single species with age

structure. I. Travelling wavefronts on unbounded domains, Proc. Royal. Soc. Lond.A, 457

(2001), 1841–1853.
[34] J. W. H. So and Y. Yang, Dirichlet problem for the diffusive Nicholson’s blowflies equation,

J. Differential Equations, 150 (1998), 317–348.
[35] R. Temam, “Infinite Dimensional Dynamical Systems in Mechanics and Physics,” Springer,

Berlin-Heidelberg-New York, 1988.

[36] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equa-
tions, Transactions of AMS, 200 (1974), 395–418.

[37] H. O. Walther, Stable periodic motion of a system with state-dependent delay, Differential

and Integral Equations, 15 (2002), 923–944.
[38] H. O. Walther, The solution manifold and C1-smoothness for differential equations with

state-dependent delay, J. Differential Equations, 195 (2003), 46–65.

[39] H. O. Walther, On a model for soft landing with state-dependent delay, J. Dynamics and
Differential Eqs, 19 (2007), 593–622.

[40] H. O. Walther, Linearized stability for semiflows generated by a class of neutral equations,

with applications to state-dependent delays, Journal of Dynamics and Differential Equations,
22 (2010), 439–462.

http://www.ams.org/mathscinet-getitem?mr=MR2235215&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2005.03.014
http://dx.doi.org/10.1016/j.nonrwa.2005.03.014
http://www.ams.org/mathscinet-getitem?mr=MR0490015&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0259693&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1975366&return=pdf
http://dx.doi.org/10.3934/dcds.2003.9.993
http://dx.doi.org/10.1126/science.267326
http://www.ams.org/mathscinet-getitem?mr=MR1272890&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0352648&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0710486&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1484352&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2209496&return=pdf
http://dx.doi.org/10.1016/j.cam.2005.01.047
http://dx.doi.org/10.1016/j.cam.2005.01.047
http://www.ams.org/mathscinet-getitem?mr=MR2280961&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2006.03.049
http://dx.doi.org/10.1016/j.jmaa.2006.03.049
http://arxiv.org/pdf/math/0503470
http://www.ams.org/mathscinet-getitem?mr=MR2437804&return=pdf
http://dx.doi.org/10.1002/mma.986
http://dx.doi.org/10.1002/mma.986
http://www.ams.org/mathscinet-getitem?mr=MR2515314&return=pdf
http://dx.doi.org/10.1016/j.na.2008.08.006
http://dx.doi.org/10.1016/j.na.2008.08.006
http://www.ams.org/mathscinet-getitem?mr=MR2661353&return=pdf
http://dx.doi.org/10.1016/j.na.2010.05.005
http://dx.doi.org/10.1016/j.na.2010.05.005
http://arxiv.org/pdf/0904.2308
http://www.ams.org/mathscinet-getitem?mr=MR1422252&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0916688&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1852431&return=pdf
http://dx.doi.org/10.1098/rspa.2001.0789
http://dx.doi.org/10.1098/rspa.2001.0789
http://www.ams.org/mathscinet-getitem?mr=MR1658605&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0953967&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0382808&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1895573&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2019242&return=pdf
http://dx.doi.org/10.1016/j.jde.2003.07.001
http://dx.doi.org/10.1016/j.jde.2003.07.001
http://www.ams.org/mathscinet-getitem?mr=MR2350240&return=pdf
http://dx.doi.org/10.1007/s10884-006-9064-8
http://www.ams.org/mathscinet-getitem?mr=MR2719915&return=pdf
http://dx.doi.org/10.1007/s10884-010-9168-z
http://dx.doi.org/10.1007/s10884-010-9168-z


PDES WITH DISCRETE STATE-DEPENDENT DELAYS 835

[41] Z. Li and X. Wang, Dynamics for a type of general reaction-diffusion model , Nonlinear
Analysis, 67 (2007), 2699–2711.

[42] E. Winston, Uniqueness of the zero solution for differential equations with state-dependence,

J. Differential Equations, 7 (1970), 395–405.
[43] J. Wu, “Theory and Applications of Partial Functional Differential Equations,” Springer-

Verlag, New York, 1996.
[44] S. Y. Liu, S. L. Wu and H. Q. Zhao, Asymptotic stability of traveling waves for delay

edreaction-diffusion equations with crossing-monostability, Z. Angew.Math. Phys., 62 (2011),

377–397.
[45] K. Yosida, “Functional Analysis,” Springer-Verlag, NewYork, 1965.

Received August 2011; revised April 2012.

E-mail address: rezounenko@yahoo.com

E-mail address: zagalak@utia.cas.cz

http://www.ams.org/mathscinet-getitem?mr=MR2345758&return=pdf
http://dx.doi.org/10.1016/j.na.2006.09.034
http://www.ams.org/mathscinet-getitem?mr=MR0268489&return=pdf
http://dx.doi.org/10.1016/0022-0396(70)90118-X
http://www.ams.org/mathscinet-getitem?mr=MR1415838&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2803477&return=pdf
http://dx.doi.org/10.1007/s00033-010-0112-1
http://dx.doi.org/10.1007/s00033-010-0112-1
mailto:rezounenko@yahoo.com
mailto:zagalak@utia.cas.cz

	1. Introduction
	2. The model with discrete state-dependent delay and preliminaries
	3. The existence and uniqueness of solutions
	4. Asymptotic properties of solutions
	Acknowledgments

	REFERENCES

