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Introduction

Consider a linear, time-invariant system (E,A,B):

Eẋ(t) = Ax(t) +Bu(t), t ≥ 0

where • E,A ∈ Rq×n, B ∈ Rq×m, rankB = m

Applying the state feedback

u(t) = Fx(t) + v(t),

where • F ∈ Rm×n, and v(t) is a new external input

gives the closed-loop system (E,A+BF,B):

Eẋ(t) = (A+BF )x(t) +Bv(t), t ≥ 0
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Motivation

change F in (E,A+BF,B)

⇓

modify the dynamical behavior of (E,A,B):

the pole structure of the system

Problems:

• pole structure assignment (PSA)
• pole assignment (PA)

↓

Non-square system (E,A,B)
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Basic definitions: pole structure, regularizable
system

Definition

The pole structure of the system (E,A,B) is defined by the
zero structure of the pencil sE −A.

the finite zero structure

the invariant polynomials of
sE −A

the infinite zero structure

the negative powers of s in the
Smith-McMillan form at ∞ of
sE −A

• (E,A,B) is called regularizable if ∃ a state feedback:

sE−A−BF is regular ⇔ rank(sE−A−BF ) is full.
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Problem Formulation

Problem Formulation (PSA)

Given • a system (E,A,B)

• monic polynomialsψ1(s)Bψ2(s) B ...B ψr(s)

• integers d1 ≥ d2 ≥ ... ≥ dkd .

Under what conditions there exists a state feedback :

the polynomials ψi(s) and integers di will be

the invariant polynomials and infinite zero orders of sE−A−BF .

Pole assignment (PA) = characteristic polynomial
assignment (regularizable system)
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The previous results

The PSA and PA problems have been widely studied in the
square systems (q = n).

1 Rosenbrock, 1970 (the seminal work) -
explicit∗ and controllable system.
(E is invertible)

2 Zaballa, 1988 - explicit and uncontrollable system.

3 Zagalak, Loiseau, 1992 - implicit∗ and controllable system.
(E is singular)

4 Loiseau, Zagalak, 2009 - regularizable system.
( PA + necessary conditions for the PSA).
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Feedback Canonical Form

The feedback group (P,Q,G, F )

• P, Q, G are invertible matrices over R

• F ∈ Rm×n

Feedback canonical form (FCF) :

(P,Q,G, F ) ◦ (E,A,B) = (PEQ,P (A+BF )Q,PBG) =:

=: (EC , AC , BC)
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(sEC − AC) := blockdiag{sEαi − Aαi},
α = ε, σ, q, p, l, η, i = 1, 2, . . . , kα

(1)

εi+1︷ ︸︸ ︷
s −1

. . .
. . .

s −1


εi

(2)

σi︷ ︸︸ ︷

s −1

. . .
. . .

. . . −1
s




σi

(3)

qi︷ ︸︸ ︷

−1

s
. . .

. . . −1

s




qi + 1

(4)

pi+1︷ ︸︸ ︷

−1 s

. . .
. . .

. . . s
−1




pi + 1

(5)

li︷ ︸︸ ︷

s −1

. . .
. . .

. . . −1

−ai0 −ai1 · · · s−ali




li

(6)

ηi︷ ︸︸ ︷

s

−1
. . .

. . . s

−1




ηi + 1
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The form of BC , indices in FCF

Matrix BC := blockdiag {0, Bσ, Bq, 0, 0, 0}, where

Bσ := blockdiag
{

[0 . . . 0 1]T ∈ Rσi
}

Bq := blockdiag
{

[0 . . . 0 1]T ∈ Rqi+1
}

The quantities describing the blocks:

1 the nonproper indices, ε1 ≥ . . . ≥ εkε ≥ 0;

2 the proper indices, σ1 ≥ . . . ≥ σkσ > 0;

3 the almost proper indices, q1 ≥ . . . ≥ qkq ≥ 0;

4 the almost nonproper indices, p1 ≥ . . . ≥ pkp > 0;

5 the fixed invariant polynomials α1(s) .α2(s) . · · · .αkl(s),
αi(s) = sli + ailis

li−1 + · · ·+ ai1s+ ai0;

6 the row minimal indices of [sEC −AC , −BC ],
η1 ≥ . . . ≥ ηkη ≥ 0.
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Normal External Description(NED)

Definition

The matrices N(s), D(s) are said to form a NED of the
system (E,A,B) if they satisfy the following conditions:

• [sE−A −B]

[
N(s)
D(s)

]
= 0

where
[
N(s)
D(s)

]
forms a minimal polynomial basis for

Ker[sE−A −B]

• Π[sE−A]N(s) = 0
where Π is a maximal annihilator of B,

N(s) forms a minimal polynomial basis for KerΠ[sE−A].
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The extension of the system

The NED of (EC , AC , BC) reflects information:

+ εi, σi
∗ controllability indices of regularizable (E,A,B)

=: ci, i = 1, 2, . . . , kε+kσ

System is controllable iff
∑

ci = rankE

– qi, pi, ηi, αi(s) (the hidden part of the system)

How to include the hidden part?

BC is extended: [BC , BC ]
⇓

the hidden part of (EC , AC , BC) appears in the NED

(EC , AC , [BC BC ]) – the extended system of (EC , AC , BC)
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Conformal mapping

To deal with finite and infinite zeros in a unified way:

conformal mapping s = (1+aw)
w

where • a ∈ R, a 6= 0, and is not a pole of the system.

the infinite zero structure of
sEC−AC

=
the finite zero structure of
wẼC−ÃC at w = 0

where wẼ − ÃC is the w-analogue of sEC −AC .
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The action of the state feedback upon
(EC , AC , BC):

[
sEC−AC − [BC B̄C ]

]  In 0 0
F Im 0
0 0 I

 In 0 0
−F Im 0

0 0 I

[NE(s)
DE(s)

]
= 0,

[sEC−AC−BCF −[BCB̄C ]]

[
NE(s)
DEF (s)

]
= 0

DEF (s) :=

[
DC(s)−FNC(s) −FNC(s)

0 DC(s)

]
where • NC(s), DC(s) form the NED of the hidden part

The main property:

The non unit invariant factors of both

wẼC−ÃC−B̃C(w)F and D̃EF (w) coincide for any F .

where • D̃EF (w) is a w−analogue of the DEF (s).
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Description of the modification of a system by a
state feedback

D̃EF (w) :=



D̃11 Sσ̃ + D̃12 D̃13 D̃14 D̃15 D̃16

D̃21 D̃22 Sq̃ + D̃23 D̃24 D̃25 D̃26

−−−−−−−−−−−−−−−−
0 0 diag{wqi} 0 0 0
0 0 0 diag{wpi} 0 0
0 0 0 0 Sα̃ 0
0 0 0 0 0 Sη̃


Sσ̃ := diag {(1 + aw)σi}kσi=1 , Sq̃ := diag {(1 + aw)qi}kqi=1

Sα̃ := diag {α̃i(w)}kli=1 , Sη̃ := blockdiag

{[
(1 + aw)ηi

−wηi

]}kη
i=1

and Dij(s) are arbitrary matrices satisfying conditions

degci

[
D1j(s)
D2j(s)

]
≤ ji, j = ε, σ, q, p, l, η.
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Under what conditions there exists a state feedback :

the full (row or column) rank pencil sE−A−BF ?

Conditions of solvability of PA:

• (a) full row rank iff kε ≥ kq and kη = 0

• (b) full column rank iff kq ≥ kε

If (a) & (b) ⇒ system is regularizable
If (a) ⊕ (b) ⇒ system is weakly (row or column) regularizable

⇓
(at least) one of the principal minors (of order min{q, n}) 6= 0

⇓

Pole assignment (PA) = the assignment of the
greatest common divisor of the principal minors (gcdpm)
of sE −A−BF
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The illusration of the Proposition

Example

Let

[sE −A −B] :=


s −1 0 0 0 0
0 0 s −1 0 0
0 0 0 0 −1 0
0 0 0 0 s −1


Defining F = [1 0 0 0], the pencil

sE −A−BF =


s −1 0 0 0
0 0 s −1 0
0 0 0 0 −1
−1 0 0 0 s


is of full row rank.
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Pole assignment in weakly regularizable system

Problem formulation(PA)

Given • a weakly regularizable system (E,A,B)

• a monic polynomialψ(s)

• an integer d

Under what conditions there exists a state feedback :

ψ̃(w)wd will be a gcdpm
(
wẼ − Ã− FB̃(w)

)
?
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• Regularizable system (kε = kq and kη = 0)

degψ(s) + d =

kε∑
i=1

εi +

kσ∑
i=1

σi +

kq∑
i=1

qi +

kp∑
i=1

pi +

kl∑
i=1

li

ψ(s) . α1(s)α2(s)...αkl(s)

d ≥
kq∑
i=1

qi +

kp∑
i=1

pi .

if kε = 0 : degψ(s) =
kσ∑
i=1

σi +
kl∑
i=1

li

• the quantities αi(s), pi, qi can not be changed by state
feedback

• the sum of the indices εi, σi is the number of the poles that
can be freely assigned either to finite or infinite locations
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• Row regularizable system (kε ≥ kq and kη = 0)

D̃EF (w) ∼=


? D̃

′
11 D̃12 D̃13 D̃14 D̃15

? D̃
′
21 D̃22 D̃23 D̃24 D̃25

−−−−−−−−−−−−−−
0 0 0 diag{wqi} 0 0
0 0 0 0 diag{wpi} 0
0 0 0 0 0 Sα̃



ψ̃(w) = ψ̃
′
(w)w(qi+pj)Sα̃, i = 1, . . . , kq , j = 1, . . . , kp

where ψ̃
′
(w) := gcdpm

[
? D̃

′
11 D̃12

? D̃
′
21 D̃22

]
and det

[
D̃

′
11 D̃12

D̃
′
21 D̃22

]
6= 0

0 ≤ degψ
′
(w) ≤

kq∑
i=1

εi +
kσ∑
i=1

σi

⇓

represents the sum of the controllable poles
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• Row regularizable system (kε ≥ kq and kη = 0)

Necessary conditions:

degψ(s) + d ≤
kq∑
i=1

εi +
kσ∑
i=1

σi +
kq∑
i=1

qi +
kp∑
i=1

pi +
kl∑
i=1

li

ψ(s) . α1(s)α2(s) · · ·αkl(s)

d ≥
kq∑
i=1

qi +
kp∑
i=1

pi

Example

Let ε1 = 0 and σ1 = 3. The matrix DEF (s) is of the form

DEF (s) =
[
α0 s3 + β2s

2 + β1s+ β0
]

⇒ the degrees of a principal minor are either 0 or 3,
but never 1 or 2
( although they satisfy the condition degψ(s) ≤ 3).
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• Column regularizable system (kq ≥ kε)

D̃EF (w) ∼=



D̃
′
11 D̃

′
12 D̃

′
13 D̃

′
14 D̃

′
15 0

D̃
′
21 D̃

′
22 D̃

′
23 D̃

′
24 D̃

′
25 0

−−−−−−−−−−−−−−−−−−−
0 0 diag{wq

′
i} 0 0 0

0 0 0 diag{wpi} 0 0
0 0 0 0 Sα̃ 0
0 0 0 0 0 Ikη+kq−kε
0 0 0 0 0 0


where {q′

i} be a subset of the indices qi, k
q
′ := card{q′

i} = kε

Necessary and sufficient conditions:

degψ(s) + d =
kε∑
i=1

εi +
kσ∑
i=1

σi +

k
q
′∑

i=1

q
′

i +
kp∑
i=1

pi +
kl∑
i=1

li

ψ(s) . α1(s)α2(s) · · ·αkl(s)

d ≥
k
q
′∑

i=1

q
′

i +
kp∑
i=1

pi
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Maximal number of zeros (including multiplicities)

Theorem

Given a weakly regularizable system (E,A,B), a monic
polynomialψ(s), an integer d.

⇒ there exists a state feedback : ψ(s) and d will be
the gcdpm and the sum of the infinite zero orders of
sE−A−BF iff:

degψ(s) + d =
kr∑
i=1

εi +
kσ∑
i=1

σi +
kr∑
i=1

qi +
kp∑
i=1

pi +
kl∑
i=1

li

ψ(s) . α1(s)α2(s)...αkl(s)

d ≥
kr∑
i=1

qi +
kp∑
i=1

pi

where r := min{kε, kq} .
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Some Remarks:

• The number of zeros that can be assigned by a state
feedback is not increased by the redundant ε, q- and
η-blocks

• In the row regularizable systems the presence of the
redundant ε-blocks may lead to the cancellation of all
poles, which are assignable at our wil

• These ε-blocks represent the so called ’internal degree of
freedom’ of the system which can not be influenced by a
control input. Using a state feedback, the influence of this
degree of freedom could be spread on the controllable part
of the system.

• The quantities ηi and the redundant indices qi present the
constraints on the solution x(t) of the system.
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