Introduction

Previous results

Background

Feedback Canonical Form Normal Externa Description Some tricks

Weakly Regularizable System

On a Pole Assignment by State Feedback in Non-square Linear Systems

Tetiana KOROTKA

8. 11. 2010

イロト イヨト イヨト イヨト

æ

Contents

Introduction

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System

Introduction

2 Previous results

3 Background

Feedback Canonical Form Normal External Description Some tricks

イロト イヨト イヨト イヨト

æ

Introduction

Consider a linear, time-invariant system (E, A, B):

$$E\dot{x}(t) = Ax(t) + Bu(t), \ t \ge 0$$

where

•
$$E, A \in \mathbb{R}^{q \times n}, B \in \mathbb{R}^{q \times m}, \text{ rank } B = m$$

Applying the state feedback

$$u(t) = Fx(t) + v(t),$$

where $F \in \mathbb{R}^{m \times n}$, and v(t) is a new external input

gives the closed-loop system (E, A + BF, B):

 $E\dot{x}(t) = (A + BF)x(t) + Bv(t), \quad t \ge 0$

Introduction

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Motivation

Introduction

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System change F in (E, A + BF, B)w modify the dynamical behavior of (E, A, B): the noise structure of the system

the pole structure of the system

Problems:

- pole structure assignment (PSA)
 - pole assignment (PA)

Non-square system (E, A, B)

æ

Basic definitions: pole structure, regularizable system

Introduction

Definition

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System

The pole structure of the system (E, A, B) is defined by the **zero structure of the pencil** sE - A.

the finite zero structure	the infinite zero structure
the invariant polynomials of $sE-A$	the negative powers of s in the Smith-McMillan form at ∞ of $sE-A$

• (E, A, B) is called <u>regularizable</u> if \exists a state feedback:

sE-A-BF is regular \Leftrightarrow rank(sE-A-BF) is full.

Problem Formulation

Problem Formulation (PSA)

Introduction

Given

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System

- a system (E, A, B)
 - monic polynomials $\psi_1(s) \triangleright \psi_2(s) \triangleright ... \triangleright \psi_r(s)$
 - integers $d_1 \geq d_2 \geq ... \geq d_{k_d}$.

Under what conditions there exists a state feedback :

the polynomials $\psi_i(s)$ and integers d_i will be

the invariant polynomials and infinite zero orders of sE-A-BF.

Pole assignment (PA) = characteristic polynomial assignment (regularizable system)

The previous results

Introductior

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System The PSA and PA problems have been widely studied in the square systems (q = n).

Rosenbrock, 1970 (the seminal work) explicit* and controllable system.

(E is invertible)

- 2 Zaballa, 1988 explicit and uncontrollable system.
- 3 Zagalak, Loiseau, 1992 implicit* and controllable system. (E is singular)
- Loiseau, Zagalak, 2009 regularizable system. (PA + necessary conditions for the PSA).

Feedback Canonical Form

Introduction

Previous results

Background

Feedback Canonical Form

Description Some tricks

Weakly Regularizable System

The feedback group (P, Q, G, F)

- P, Q, G are invertible matrices over \mathbb{R}
- $F \in \mathbb{R}^{m \times n}$

Feedback canonical form (FCF) :

$$(P,Q,G,F) \circ (E,A,B) = (PEQ, P(A+BF)Q, PBG) =:$$

イロン イヨン イヨン イヨン

3

 $=:(E_C, A_C, B_C)$

$$(sE_C - A_C) := \text{blockdiag}\{sE_{\alpha_i} - A_{\alpha_i}\},\\ \alpha = \epsilon, \sigma, q, p, l, \eta, \ i = 1, 2, \dots, k_{\alpha}$$

Introduction

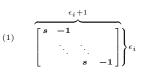
Previous results

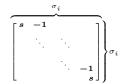
Background

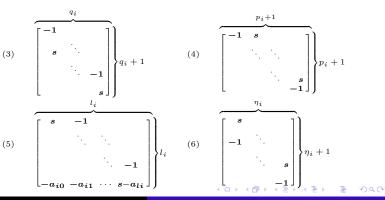
Feedback Canonical Form

Normal Extern Description Some tricks

Weakly Regularizable System







(2)

The form of B_C , indices in FCF

Matrix $B_C := \text{blockdiag} \{0, B_\sigma, B_q, 0, 0, 0\}$, where $B_\sigma := \text{blockdiag} \{[0 \dots 0 \ 1]^T \in \mathbb{R}^{\sigma_i}\}$ $B_q := \text{blockdiag} \{[0 \dots 0 \ 1]^T \in \mathbb{R}^{q_i+1}\}$

The quantities describing the blocks:

- 1) the **nonproper** indices, $\epsilon_1 \geq \ldots \geq \epsilon_{k_{\epsilon}} \geq 0$;
- **2** the **proper** indices, $\sigma_1 \ge \ldots \ge \sigma_{k_{\sigma}} > 0$;
- **3** the almost proper indices, $q_1 \ge \ldots \ge q_{k_q} \ge 0$;
- 4 the almost nonproper indices, $p_1 \ge \ldots \ge p_{k_p} > 0$;
- **6** the fixed invariant polynomials $\alpha_1(s) \triangleright \alpha_2(s) \triangleright \cdots \triangleright \alpha_{k_l}(s)$, $\alpha_i(s) = s^{l_i} + a_{il_i}s^{l_i-1} + \cdots + a_{i1}s + a_{i0}$;

6 the row minimal indices of $[sE_C - A_C, -B_C]$, $\eta_1 \ge \ldots \ge \eta_{k_\eta} \ge 0.$

Introduction

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Normal External Description(NED)

Definition

Introduction

Previous results

Background

Feedback Canonical Form

Normal External Description

Weakly Regularizable System The matrices N(s), D(s) are said to form a **NED** of the system (E, A, B) if they satisfy the following conditions:

$$\begin{bmatrix} sE-A & -B \end{bmatrix} \begin{bmatrix} N(s) \\ D(s) \end{bmatrix} = 0$$

where
$$\begin{bmatrix} N(s) \\ D(s) \end{bmatrix}$$
 forms a minimal polynomial basis for
Ker[$sE-A - B$]

• $\Pi[sE - A]N(s) = 0$ where Π is a maximal annihilator of B,

N(s) forms a minimal polynomial basis for $\text{Ker}\Pi[sE-A]$.

The extension of the system

results

Background

Some tricks

Weakly Regularizable System

The **NED** of (E_C, A_C, B_C) reflects information: +

 ϵ_i, σ_i

*

controllability indices of regularizable (E, A, B)

 $=: c_i, i = 1, 2, \dots, k_{\epsilon} + k_{\sigma}$

System is controllable iff

$$\sum c_i = \operatorname{rank} E$$

 $q_i, p_i, \eta_i, \alpha_i(s)$ (the hidden part of the system)

How to include the hidden part?

 B_C is extended: $[B_C, \overline{B}_C]$ the hidden part of (E_C, A_C, B_C) appears in the **NED** $(E_C, A_C, [B_C \ \overline{B}_C])$ – the extended system of (E_C, A_C, B_C)

Conformal mapping

Introduction

Previous results

Background Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System To deal with finite and infinite zeros in a unified way: conformal mapping $s = \frac{(1+aw)}{w}$ where • $a \in \mathbb{R}, a \neq 0$, and is not a pole of the system. the infinite zero structure of $sE_C - A_C$ = the finite zero structure of $w\tilde{E}_C - \tilde{A}_C$ at w = 0

where $w \tilde{E} - \tilde{A}_C$ is the w-analogue of $s E_C - A_C$.

◆□ > ◆□ > ◆目 > ◆目 > ● □ ● ● ●

The action of the state feedback upon (E_C, A_C, B_C) :

$$\begin{bmatrix} sE_{C} - A_{C} & - [B_{C} \ \bar{B}_{C}] \end{bmatrix} \begin{bmatrix} I_{n} & 0 & 0 \\ F & I_{m} & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} I_{n} & 0 & 0 \\ -F & I_{m} & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} N_{E}(s) \\ D_{E}(s) \end{bmatrix} = 0,$$
$$\begin{bmatrix} sE_{C} - A_{C} - B_{C}F & -[B_{C}\bar{B}_{C}] \end{bmatrix} \begin{bmatrix} N_{E}(s) \\ D_{EF}(s) \end{bmatrix} = 0$$
$$D_{EF}(s) := \begin{bmatrix} D_{C}(s) - FN_{C}(s) & -F\overline{N}_{C}(s) \\ 0 & \overline{D}_{C}(s) \end{bmatrix}$$

- ·

Background

Feedback Canonical Form Normal Externa Description Some tricks

Weakly Regularizable System

where $\overline{N}_C(s), \ \overline{D}_C(s)$ form the NED of the hidden part

The main property:

The non unit invariant factors of both

 $w\tilde{E}_C - \tilde{A}_C - \tilde{B}_C(w)F$ and $\tilde{D}_{EF}(w)$ coincide for any F.

where • $\tilde{D}_{EF}(w)$ is a w-analogue of the $D_{EF}(s)$.

Description of the modification of a system by a state feedback

Introduction

Previous results

Feedback Canonical Forn Normal Extern

Description Some tricks

$$\begin{split} \tilde{D}_{EF}(w) &:= \begin{bmatrix} \tilde{D}_{11} & S_{\tilde{\sigma}} + \tilde{D}_{12} & \tilde{D}_{13} & \tilde{D}_{14} & \tilde{D}_{15} & \tilde{D}_{16} \\ \tilde{D}_{21} & \tilde{D}_{22} & S_{\tilde{q}} + \tilde{D}_{23} & \tilde{D}_{24} & \tilde{D}_{25} & \tilde{D}_{26} \\ \hline & & & & & & & & \\ 0 & 0 & \text{diag}\{w^{q_i}\} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \text{diag}\{w^{p_i}\} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{\tilde{\alpha}} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{\tilde{\alpha}} \end{bmatrix} \\ S_{\tilde{\sigma}} &:= \text{diag}\{(1 + aw)^{\sigma_i}\}_{i=1}^{k_{\sigma}}, \quad S_{\tilde{q}} := \text{diag}\{(1 + aw)^{q_i}\}_{i=1}^{k_q} \\ S_{\tilde{\alpha}} &:= \text{diag}\{\tilde{\alpha}_i(w)\}_{i=1}^{k_l}, \quad S_{\tilde{\eta}} := \text{blockdiag}\left\{\begin{bmatrix} (1 + aw)^{\eta_i} \\ -w^{\eta_i} \end{bmatrix}\right\}_{i=1}^{k_{\eta}} \\ \text{and } D_{ij}(s) \text{ are arbitrary matrices satisfying conditions} \end{split}$$

$$\deg_{ci} \begin{bmatrix} D_{1j}(s) \\ D_{2j}(s) \end{bmatrix} \le j_i, \ j = \epsilon, \sigma, q, p, l, \eta.$$

Under what conditions there exists a state feedback : the full (row or column) rank pencil sE - A - BF ?

Conditions of solvability of PA:

• (a) full row rank iff

$$k_{\epsilon} \ge k_q \text{ and } k_{\eta} = 0$$

• (b) full column rank iff $k_q \ge k_\epsilon$

If (a) & (b)
$$\Rightarrow$$
 system is regularizable

If (a) \oplus (b) \Rightarrow system is weakly (row or column) regularizable

₩

(at least) one of the principal minors (of order $\min\{q, n\}) \neq \mathbf{0}$

₩

Pole assignment (PA) = the assignment of the greatest common divisor of the principal minors (gcdpm) of sE - A - BF

Introduction

Previous results

Background

Feedback Canonical Form Normal Externa Description Some tricks

The illusration of the Proposition

Example

Let

ntroduction

Previous results

Backgroun

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System

$$[sE - A - B] := \begin{bmatrix} s & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & s & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & s & -1 \end{bmatrix}$$

Defining $F = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, the pencil

$$sE - A - BF = \begin{bmatrix} s & -1 & 0 & 0 & 0 \\ 0 & 0 & s & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & s \end{bmatrix}$$

is of full row rank.

Pole assignment in weakly regularizable system

Introduction

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System

Problem formulation(PA)

Given

- a weakly regularizable system (E, A, B)
 - a monic polynomial $\psi(s)$
 - an integer d

Under what conditions there exists a state feedback : $\tilde{\psi}(w)w^d$ will be a gcdpm $(w\tilde{E} - \tilde{A} - F\tilde{B}(w))$?

• Regularizable system $(k_{\epsilon} = k_q \text{ and } k_{\eta} = 0)$

Introduction

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System

$$\begin{split} \deg \psi(s) + d &= \sum_{i=1}^{k_{\epsilon}} \epsilon_i + \sum_{i=1}^{k_{\sigma}} \sigma_i + \sum_{i=1}^{k_q} q_i + \sum_{i=1}^{k_p} p_i + \sum_{i=1}^{k_l} l_i \\ \psi(s) \triangleright \alpha_1(s) \alpha_2(s) \dots \alpha_{k_l}(s) \\ d &\geq \sum_{i=1}^{k_q} q_i + \sum_{i=1}^{k_p} p_i \ . \end{split}$$
 if $k_{\epsilon} = 0$:
$$\deg \psi(s) = \sum_{i=1}^{k_{\sigma}} \sigma_i + \sum_{i=1}^{k_l} l_i$$

- the quantities $\alpha_i(s), p_i, q_i$ can not be changed by state feedback
- the sum of the indices ε_i, σ_i is the number of the poles that can be freely assigned either to finite or infinite locations

イロン イ部ン イヨン イヨン 三日

• Row regularizable system $(k_{\epsilon} \ge k_q \text{ and } k_{\eta} = 0)$

Introduction

Previous results

Background

Feedback Canonical Form Normal Externa Description Some tricks

Weakly Regularizable System

$$\begin{split} \tilde{\psi}(\boldsymbol{w}) &= \tilde{\psi}'(\boldsymbol{w}) \boldsymbol{w}^{(\boldsymbol{q}_i + \boldsymbol{p}_j)} \boldsymbol{S}_{\tilde{\boldsymbol{\alpha}}}, \quad i = 1, \dots, k_q, \ j = 1, \dots, k_p \end{split}$$
where
$$\begin{split} \tilde{\psi}'(\boldsymbol{w}) &:= \operatorname{gcdpm} \begin{bmatrix} \star \quad \tilde{D}'_{11} \quad \tilde{D}_{12} \\ \star \quad \tilde{D}'_{21} \quad \tilde{D}_{22} \end{bmatrix} \text{ and } \operatorname{det} \begin{bmatrix} \tilde{D}'_{11} \quad \tilde{D}_{12} \\ \tilde{D}'_{21} \quad \tilde{D}_{22} \end{bmatrix} \neq 0 \end{split}$$

$$0 \hspace{.1in} \leq \hspace{.1in} \deg \psi^{'}(w) \hspace{.1in} \leq \hspace{.1in} \sum_{i=1}^{k_{q}} \epsilon_{i} + \sum_{i=1}^{k_{\sigma}} \sigma_{i}$$

represents the sum of the controllable poles

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

• Row regularizable system $(k_{\epsilon} \geq k_q \text{ and } k_{\eta} = 0)$

Necessary conditions:

Introduction

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System

$$\deg \psi(s) + d \leq \sum_{i=1}^{k_q} \epsilon_i + \sum_{i=1}^{k_\sigma} \sigma_i + \sum_{i=1}^{k_q} q_i + \sum_{i=1}^{k_p} p_i + \sum_{i=1}^{k_l} l_i$$

$$\psi(s) \triangleright \alpha_1(s)\alpha_2(s)\cdots\alpha_{k_l}(s)$$

$$d \geq \sum_{i=1}^{k_q} q_i + \sum_{i=1}^{k_p} p_i$$

Example

Let $\epsilon_1 = 0$ and $\sigma_1 = 3$. The matrix $D_{EF}(s)$ is of the form

$$D_{EF}(s) = \begin{bmatrix} \alpha_0 & s^3 + \beta_2 s^2 + \beta_1 s + \beta_0 \end{bmatrix}$$

⇒ the degrees of a principal minor are either 0 or 3, but never 1 or 2 (although they satisfy the condition $\deg \psi(s) \leq 3$).

• Column regularizable system $(k_q \ge k_\epsilon)$

Introduction

Previous results

Background

Feedback Canonical Form Normal Externa Description Some tricks

Weakly Regularizable System

$$\tilde{D}_{EF}(w) \simeq \begin{bmatrix} \tilde{D}_{11}' & \tilde{D}_{12}' & \tilde{D}_{13}' & \tilde{D}_{14}' & \tilde{D}_{15}' & 0 \\ \tilde{D}_{21}' & \tilde{D}_{22} & \tilde{D}_{23} & \tilde{D}_{24}' & \tilde{D}_{25}' & 0 \\ ------ & ---- & ----- \\ 0 & 0 & \text{diag}\{w^{q_i}\} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \text{diag}\{w^{p_i}\} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{\tilde{\alpha}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & I_{k_\eta + k_q - k_{\epsilon}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

where $\ \ \{q_i^{'}\}$ be a subset of the indices $q_i, \ \ k_{q^{'}}:=\mathrm{card}\{q_i^{'}\}=k_\epsilon$

Necessary and sufficient conditions:

$$\deg \psi(s) + d = \sum_{i=1}^{k_{\epsilon}} \epsilon_i + \sum_{i=1}^{k_{\sigma}} \sigma_i + \sum_{i=1}^{k_{q'}} q'_i + \sum_{i=1}^{k_p} p_i + \sum_{i=1}^{k_l} l_i$$
$$\psi(s) \triangleright \alpha_1(s)\alpha_2(s)\cdots\alpha_{k_l}(s)$$
$$d \ge \sum_{i=1}^{k_{q'}} q'_i + \sum_{i=1}^{k_p} p_i$$

Maximal number of zeros (including multiplicities)

Theorem

 \Rightarrow

ntroduction

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

Weakly Regularizable System Given $\frac{a \text{ weakly regularizable system}}{polynomial \psi(s), an integer d}$. (E, A, B), a monic

<u>there exists a state feedback :</u> $\psi(s)$ and d will be the gcdpm and the sum of the infinite zero orders of sE-A-BF iff:

$$\deg \psi(s) + d = \sum_{i=1}^{k_r} \epsilon_i + \sum_{i=1}^{k_\sigma} \sigma_i + \sum_{i=1}^{k_r} q_i + \sum_{i=1}^{k_p} p_i + \sum_{i=1}^{k_l} l_i$$

$$\psi(s) \triangleright \alpha_1(s)\alpha_2(s)...\alpha_{k_l}(s)$$

$$d \geq \sum_{i=1}^{k_r} q_i + \sum_{i=1}^{k_p} p_i$$

where $r := \min\{k_{\epsilon}, k_q\}$.

Some Remarks:

Introduction

Previous results

Background

Feedback Canonical Form Normal External Description Some tricks

- The number of zeros that can be assigned by a state feedback is not increased by the redundant ϵ, q and $\eta\text{-blocks}$
- In the row regularizable systems the presence of the redundant ε-blocks may lead to the cancellation of all poles, which are assignable at our wil
- These ε-blocks represent the so called 'internal degree of freedom' of the system which can not be influenced by a control input. Using a state feedback, the influence of this degree of freedom could be spread on the controllable part of the system.
- The quantities η_i and the redundant indices q_i present the constraints on the solution x(t) of the system.