Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Supra-Bayesian estimate Posterior pdf

hoice of

Evaluation o λ s

Supra-Bayesian combination of probability distributions - part III

Vladimíra Sečkárová

14.05.2011

Situation

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Supra-Bayesian estimate

hoice of B

Evaluation of λ s

ldeas Examples

- we have: a random vector described by unknown probability mass function h
- ullet aim is: to evaluate the estimate of h based on data D
- form of the estimate: $\hat{h} = \mathrm{E}_{\pi(h|D)}(h|D)$ (based on Kerridge inaccuracy)
- question 1: form of the posterior pdf $\pi(h|D)$
- question 2: form of the estimate based on used $\pi(h|D)$

Posterior pdf

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Supra-Bayesian estimate Posterior pdf

Choice of β s

Evaluation of λ s decay decay λ s Examples

posterior pdf:

- maximizes the entropy subject to dissimilarity constraints
- constraint considered for j^{th} source is: $EK(g_j, h) = \beta_j$
- aim is: to compute the Lagrangian of this optimization task
- Lagrangian:

$$L(.,.) = D(\pi(h|D)||^{O}\pi(h|D)) - \log \frac{\prod_{i}\Gamma(\nu_{i})}{\Gamma(\nu_{0})} - \sum_{j} \lambda_{j}\beta_{j}$$

- ${}^{O}\pi(h|D)$ pdf of Dirichlet distribution, $\lambda_{j}>0$ j^{th} Lagrange multiplier (representing the weights)
- estimate form: $\hat{h}(.) = \frac{1}{n + \sum_{j} \lambda_{j}} + \sum_{j} \frac{\lambda_{j} g_{j}(.)}{n + \sum_{j} \lambda_{j}}$
- question: choice of β_j
- ullet question: evaluation of λ s

Choice of β s

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárova

Supra-Bayesian estimate Posterior po

Choice of β s

Evaluation of λ s
Ideas

- the following holds: $\beta_i = \text{EK}(g_i, h) \ge H(g_i)$
- each β_j is set as $H(g_j)$ (entropy of j^{th} source)
- possible reason: smaller value of βs better performance in λs (in the sense of sources differentiability)
- with higher β s the values of Lagrange multipliers declines \rightarrow with higher β s the weights come closer

Evaluation of λ s

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Supra-Bayesian estimate

Choice of β s

Evaluation of λ s

• we are looking for λ which minimizes the Lagrangian = we want to find λ_j such that first derivative w.r.t. each λ_j of Lagrangian equals zero

- formula for λ_j : $-\sum_i \psi(\nu_i)g_j + \psi(\nu_0) = \beta_j$
- where: $\nu_i = 1 + \sum_j \lambda_j g_j(x_i)$, $\nu_0 = n + \sum_j \lambda_j$
- we have a system of nonlinear equations:

$$-\left(\begin{array}{cc} (& g_1 &) \\ & \vdots & \\ (& g_s &) \end{array}\right) \left(\begin{array}{c} \psi(\nu_1) \\ \vdots \\ \psi(\nu_n) \end{array}\right) + \left(\begin{array}{c} \psi(\nu_0) \\ \vdots \\ \psi(\nu_0) \end{array}\right) = \left(\begin{array}{c} \beta_1 \\ \vdots \\ \beta_s \end{array}\right)$$

Ideas

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Supra-Bayesian estimate Posterior p

Choice of ps

Evaluation of λ s

Ideas Examples \bullet recurrence formula for ψ :

$$\psi_i = \psi(1 + \sum_j \lambda_j g_j(x_i)) = \psi(\sum_j \lambda_j g_j(x_i)) + \frac{1}{\sum_j \lambda_j g_j(x_i)}$$

- series expansions: not effective either
- asymptotic formulas: also not helpful
- done so far: numeric computation

Example I

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Supra-Bayesian estimate Posterior p

Choice of β s

Evaluation of λs Ideas Examples • number of realizations: 2

• 1 data source: $g_1 = (g_1(x_1), g_1(x_2)) = (0.3, 0.7)$

• results: $\lambda_1 = 40.25$, value: 0.0029

• $\hat{h}(x_1) = 0.31$, $\hat{h}(x_2) = 0.69$

function converged

Examples II

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Supra-Bayesian estimate Posterior p

Choice of etas

Evaluation of λs ^{Ideas} Examples • 2 data sources: $g_1 = [0.3, 0.7]$, $g_2 = [0.4, 0.6]$

• results: $\lambda_1 = 56.4896$, $\lambda_2 = 53.0830$

• value: 0.0101, 0.0099

• $\hat{h} = (0.35, 0.65)$

function converged

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Bayesian estimate Posterior pdf

Choice of β

Evaluation of λ s Ideas Examples

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Supra-Bayesian estimate Posterior p

Choice of p

Evaluation of λ s

Ideas
Examples

Examples III

Supra-Bayesian combination of probability distributions part III

> Vladimíra Sečkárová

Supra-Bayesian estimate Posterior po

Choice of etas

Evaluation of λ s
Ideas
Examples

• number of realizations: 2

• 5 data source:
$$\begin{pmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.35 & 0.65 \\ 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}, \ \lambda = \begin{pmatrix} 35.2 \\ 46.6 \\ 52.3 \\ 35.2 \\ 35.2 \end{pmatrix}$$

- $\hat{h} = (0.44, 0.56)$
- function converged
- problem: if $g_j = (0.8, 0.2)$ is used in this example, algorithm does not converge