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Pod vodárenskou věžı́ 4, 182 08 Prague, Czech Republic and Faculty of Civil Engineering,

Czech Technical University, Thákurova 7,
166 29 Prague, Czech Republic

AND

JOHANNES ZIMMER∗

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
∗Corresponding author: zimmer@maths.bath.ac.uk

[Received on 24 July 2009; revised on 11 May 2010; accepted on 16 November 2010]

We propose a phenomenological model for the evolutionary behaviour of shape memory alloys, where
the possibility of plastic deformation is taken in to account. Two dissipative mechanisms are considered,
namely the dissipation associated with solid–solid (martensitic) phase transformations and plastic dissi-
pation. The plastic contribution may lead to an irreversibility of the evolution. The existence of a so-called
energetic solution is established for a suitable relaxation of the problem in the space of Young measures.
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1. The mathematical model

‘Shape memory alloys’ (SMAs) have been the focus of many investigations in the last decade. This
interest can partially be attributed to the shape memory effect itself (see Section 1.1) but even more the
non-convexity of the Helmholtz energy density due to the co-existence of several variants, which poses
a significant mathematical challenge. An established setting for models for SMAs is that of non-linear
elasticity. We deviate here from this context by including elasto-plastic effects. For SMAs, this seems to
be a relatively new line of research. While SMAs can undergo many cycles of loading and unloading,
plastic effects can have a significant influence on material properties. For example, cyclic plasticity may
occur, which can negatively affect the performance of the material.

Microscopically, martensitic shape memory materials exhibit dislocations and thus plastic effects.
For a superelastic NiTi wire, a transmission electron microscopy of the microstructure shows the pres-
ence of dislocations on the {110} slip system (see Fig. 1, left panel). It is remarkable that the dislocation
appear not after a large numbers of cycles; the photograph of Fig. 1 was taken after 10 tensile cycles. The
corresponding hysteretic stress–strain relationship evolves during these 10 cycles due to plastic effects
as shown in Fig. 1 (right panel). We refer the reader to Novák et al. (2009) and Delville et al. (2011) for
transmission electron analysis of dislocations during cycling of martensitic materials.

Also, molecular dynamics (MD) simulations of martensitic materials show the creation of dis-
locations. Kastner & Ackland (2009) investigate a 2D model of martensitic materials, using binary
Lennard–Jones potentials in a classic MD setting (a thermostatted version of the Verlet algorithm).
Dislocation lines can be seen to originate in a setting with crystalline initial data.

c© The Author 2010. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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194 M. KRUŽÍK AND J. ZIMMER

FIG. 1. Left: transmission electron microscopy of the microstructure in a of a NiTi wire shows the presence of dislocations on
the {110} slip system after 10 tensile cycles. Right: the corresponding evolution of the hysteretic stress–strain loop over tensile
cycling. Both figures courtesy of Šittner (see also Novák et al., 2009).

Kundin et al. (2010) investigate plastic-elastic effects in martensitic materials with a phase field
model. There, phase field variables are introduced for dislocations of different orientational variants of
martensite and austenite; the dislocations move with the interface between adjacent phases. Again, the
presence of dislocations is significant; for example, the martensitic volume fractions depend on the in-
terdislocation distance (Kundin et al., 2010). A full phase field model, with dislocations being able to
move independently from interfaces, is however computationally much more costly and not available at
present.

The above experiments and simulations motivate the mathematical analysis of models of shape
memory materials accounting for plastic effects. Continuum mechanics is a framework in which ex-
istence can often be shown with relative ease for models of materials. Remarkably, the inclusion of
plastic effects in macroscopic models of materials seems to be a new line of research. Auricchio et al.
(2007) have recently investigated a 3D model for SMAs with inelastic effects. We propose a differ-
ent model, based on the theory of gradient plasticity advocated by, e.g. Dillon & Kratochvı́l (1970)
and Gurtin (2000). To our knowledge, there is no other model of SMAs with plastic effects in the set-
ting of multiplicative plasticity; we work in this setting since it then becomes possible to study large
deformation phenomena.

The temporal evolution of the model presented here is rate independent. The framework of energetic
solutions is a suitable description of such an evolution; it is sketched in Section 1.3.

One feature of the model is that it includes non-local terms, both for the plastic variables and for
the volume fractions of the different phases and variants. The non-local terms we have chosen are phe-
nomenological and among the simplest possible non-local expressions, being gradient terms. For the
plastic variable, gradient plasticity is is an established model (Dillon & Kratochvı́l, 1970; Gurtin, 2000).
There are attempts to derive macroscopic non-local expressions, rather than assuming them as we do
here, based on limit passages for statistical mechanics (Groma et al., 2003; Kratochvı́l & Sedláček,
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A MODEL OF SMAs TAKING INTO ACCOUNT PLASTICITY 195

2008). These attempts, while very valuable, are fraught with technical difficulties and thus have to
resort to strong simplifying assumptions. Future research will have to address this limit passage further
and derive non-local terms which can be used for the macroscopic description in place of the simple
gradient expressions we use here.

The physical applicability of the model and the existence result obtained in this paper is demon-
strated by numerical simulations in Section 4. For simplicity, we consider there the small strain version.
The simulations show a pseudoelastic-plastic hysteresis loop (Fig. 3) of the same characteristics as the
experimental one (Fig. 1). Both simulation and experiment show a significant increase of the permanent
deformation of the austenite over an increasing number of cycles. Note that the number of cycles is
small in both cases (6 for the simulation and 10 for the experiment). While the experiment concerns
NiTi, which has 12 martensitic variants, we restrict the numerical simulation to a double-well setting.
Yet, the increase of permanent deformation after 6 cycles is comparable (<2.5% in the experiment and
about 1% in the simulation).

In the remainder of this section, we introduce the energetic approach to an elasto-plasticity problem
of SMAs. After a brief overview over SMAs, microstructures and the associated non-quasiconvexity
of the energy in Section 1.1, we describe in Section 1.2 the plasticity and the dissipation mechanisms
employed in this paper. The mathematical formulation of the model is introduced in Section 2. The
existence of a solution is proved via time discretization (Section 3).

A few remarks are in order about the context of the model. We consider energetic solutions to a
rate-independent process. Energetic solutions have been proved to be very powerful for a number of ap-
plications, including non-convex problems (see, e.g. Francfort & Mielke, 2006 and Mielke & Roubı́ček,
2003). There and in the present situation, the proof of the existence of a solution serves as a first indica-
tion that the model is meaningful (the proof is constructive and shows that a time-incremental problem is
well posed). Here, we present in Section 4 some 2D numerical simulations to further validate the model
(in fact, a slight simplification of the model). The result shows the expected behaviour: Shape memory
effects can be temperature induced or stress induced. We here work in the stress-induced setting. SMAs
exhibit there a strongly non-linear (even hysteretic) stress–strain relationship, which is known as pseu-
doelasticity. The stress–strain relationship in the simulation exhibits a non-linearity as for the typical
pseudoelastic regime but with additional plastic effects (see Fig. 3). Similarly, the plastic strain increases
in the load experiment of Section 4 as shown in Fig. 3. The simulations thus show that plastic effects
are captured by a small strain version of the model analysed here as are the pseudoelastic effects associ-
ated with shape memory effects. There is a wide range of other isothermal models for SMAs (see, e.g.
Bhattacharya, 2003, Roubı́ček, 2004 for a survey of various models, both isothermal and thermody-
namic, of SMAs), but the inclusion of plastic effects seems to be a relatively new area of research. The
coupling of elastic and plastic effects for SMAs is a first step beyond purely elastic models (such as the
limit problem of infinite plastic dissipation); it is desirable to include further effects, be it thermal or
magnetic.

1.1 Shape memory alloys

SMAs are active materials and have been the subject of intensive theoretical and experimental research
during the past decades. Existing or potential applications can be found, e.g. in medicine and me-
chanical or aerospace engineering. SMAs are crystalline materials that exhibit specific a ‘hysteretic’
stress/strain/temperature response; they have the ability to recover a trained shape after deformation and
subsequent reheating. This is called the ‘shape memory effect’. It is based on the ability of the SMA
to rearrange atoms in different crystallographic configurations (in particular, with different symmetry
groups). The stability depends on the temperature. Normally, at higher temperatures, a high-symmetry
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196 M. KRUŽÍK AND J. ZIMMER

(e.g. cubic) lattice is stable, which is referred to as the ‘austenite’ phase. At lower temperatures, a lat-
tice of lower symmetry (e.g. tetragonal, orthorhombic, monoclinic or triclinic) becomes stable, called
the ‘martensite’ phase. Due to the loss of symmetry, this phase may occur in different ‘variants’. The
number of variants M , say, is the quotient of the order of the high-symmetry phase and the order of the
low-symmetry group. So for a cubic high-symmetry phase, M = 3, 6, 12 or 4 for the tetragonal, or-
thorhombic, monoclinic, respectively, triclinic martensites mentioned above. We denote the stress-free
strains of the variants U!, ! = 1, 2, . . . , M , and U0 stands for the stress-free strain of the austenite.
The variants can be combined coherently with each other, forming so-called ‘twins’ of two variants.
The resulting structure is then called a ‘laminate’.

The mathematical and computational modelling of SMAs represents a tool for the theoretical under-
standing of phase transition processes in solids. Such an analysis may complement experimental results,
predict the response of new materials or facilitate the usage of SMAs in applications. SMAs are gen-
uine ‘multi-scale’ materials and create a variety of challenges for mathematical modelling. We refer the
reader to the literature (Roubı́ček, 2004) for a survey of a wide menagerie of SMA models ranging from
nanoscale to macroscale. In this article, we focus on a mesoscopic model in the framework of continuum
mechanics. Beside the macroscopic deformation and its gradient, the model also involves the volume
fractions of phases and variants and volume fraction gradients. This seems a fruitful compromise since
it allows for the modelling scales of large single crystals or polycrystals.

Let the specimen occupy a domainΩ ⊂ Rn . The stress-free parent austenite is a natural state of the
material which makes it, in the context of continuum mechanics, a canonical choice for the reference
configuration. As usual, y: Ω → Rn denotes the ‘deformation’ and u: Ω → Rn the ‘displacement’,
which are related to each other via the identity y(x) = x+u(x), where x ∈ Ω . Hence, the ‘deformation
gradient’ is F := ∇ y = I+ ∇u. Here, I ∈ Rn×n is the identity matrix and ∇ the gradient operator.

The total stored energy in the bulk occupying, in its reference configuration, the domainΩ is then

V (y) :=
∫

Ω
ϕ(∇ y(x))dx . (1.1)

A common variational principle in continuum mechanics is the ‘minimization’ of the stored energy.
Due to the coexistence of several variants at low temperature, ϕ has multiple minima and thus a multi-
well character. We consider an isothermal situation with several variants coexisting. Since ϕ is a multi-
well energy density, minimizing sequences of V tend to develop, in general, finer and finer spatial
oscillations of their gradients. In other words, the deformation gradient often tends to develop fine spatial
oscillations due to lack of quasiconvexity of the stored energy density. (We recall that ψ : Rn×n → R
is ‘quasiconvex’ if, for all A ∈ Rn×n and all v ∈ W 1,∞

0 (Ω; Rn), ψ(A)|Ω| !
∫
Ω ψ(A + ∇v(x))dx .

If ψ " 0 is not quasiconvex but measurable and locally bounded, we define its ‘quasiconvexification’
Qψ by Qψ(A)|Ω| = inf

v∈W 1,∞
0 (Ω;Rn)

∫
Ω ψ(A + ∇v(x))dx .) These oscillations are difficult to model

in full detail, although some studies in this direction exists (Arndt, 2004). The oscillations correspond
to the development of finer and finer microstructures when the stored energy is to be minimized. The
minimum of V , under specific boundary conditions for y, is usually not attained in a space of functions.
This is a problem of relaxation in the calculus of variations. One possibility is to replace ϕ by its
quasiconvexification Qϕ. However, to calculate Qϕ is usually extremely difficult and it is not typically
known in a closed form. Another possibility is to extend the notion of a solution. ‘Young measures’ are
here an appropriate tool. They are capable of recording, on a mesoscopic level, the limit information
of the finer and finer oscillating deformation gradient as we move towards the macroscopic scale. This
can be described, for a current macroscopic point x ∈ Ω , by a probability measure νx on the set
of deformation gradients, i.e. matrices in Rn×n . See Appendix A for a concise description of Young
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A MODEL OF SMAs TAKING INTO ACCOUNT PLASTICITY 197

measures. To describe explicitly, the set of Young measures admissible for our problem (the so-called
gradient Young measures, Kinderlehrer & Pedregal, 1994) is equivalent to quasiconvexification of ϕ.
Nevertheless, Young measures have some advantages from the computational point of view, for instance.

1.2 Plastic variables, gradient terms and dissipative mechanisms

In many situations, the austenite–martensite phase transformation is connected with plastic effects. In
particular, cyclic plasticity may occur, which can negatively affect the performance of the material.
Hence, mathematical models including both plasticity of shape memory materials are needed. One such
model is discussed here; see Auricchio et al. (2007) and Sadjadpour & Bhattacharya (2007) for related
phenomenological models. We refer the reader to Carstensen et al. (2002) for a model of finite-strain
elasto-plasticity where the existence can also be inferred by time discretization.

In order to include plasticity to the model, we assume that elastic properties of the material depend on
plastic (internal) variables. In the setting described so far, the deformation y covers both the ‘elastic’ and
the ‘plastic’ deformation. We employ the multiplicative split F = FeFp of the deformation gradient into
an elastic part Fe and an irreversible plastic part Fp. The latter belongs to SL(n) := {A ∈ Rn×n|det(A) =
1}. In addition to the so-called ‘plastic strain’ Fp, we consider a vector p ∈ Rm of ‘hardening variables’.
Both Fp and p are internal variables that influence the elasticity. It is to convenient to abbreviate z =
(Fp, p). Furthermore, λ: Ω → RM+1 records the volume fraction of austenite and the M variants of
martensite at a point x ∈ Ω (Mielke & Roubı́ček, 2003). As mentioned above, the stored energy density
of shape memory materials is typically not quasiconvex, which explains why we consider a Young
measure ν for the deformation gradient. For the moment, the intuitive interpretation of a Young measure
ν = {νx }x∈Ω as a recording device for the probability to find a phase or variant at the location x ∈ Ω
suffices; see Appendix A for precise definitions making this intuition rigorous. In summary, we describe
the state of the material by q := (y, ν, λ, Fp, p) = (y, ν, λ, z) and denote the set of these q’s by Q. A
precise definition of Q tailored to our problem is given in (2.6) below.

1.2.1 Gradient terms. Following the approach of Dillon & Kratochvı́l (1970) and Gurtin (2000) and
others, we work in the framework of so-called ‘gradient plasticity’, i.e. ∇z enters the problem. As one
can regard the volume fraction λ as an internal variable, too, it is natural to include a term involving
∇λ in the energetic contributions as well. This term also serves as a regularization since it ensures
compactness. The prominent model for SMAs by Mielke & Roubı́ček (2003) also introduces this term;
as a justification, Mielke & Roubı́ček (2003) consider the bulk energy associated with the Ericksen–
Timoshenko beam

∫

Ω

[
φ(x, ∇u) + ε1|∇2u|2 + 1

ε2
|λ − L(x, ∇u)|2 + ρ|∇λ|2

]
dx,

where ε1 describes the bending rigidity and ε2 describes the deviation of the macroscopic order parame-
ter λ from a microscopic order parameter L (which is just the projection to the second component in the
classic Ericksen–Timoshenko model). Then √

ε2ρ is the internal length scale discussed, e.g. by Ren &
Truskinovsky (2000); the model of Mielke & Roubı́ček (2003) is the asymptotic limit ε1 → 0 followed
by the limit ε2 → 0. The gradient term survives these limit passages. In simulations, however, it is pos-
sible to set the coefficient ρ to zero since the solvability of a finite-dimensional approximation follows
even in this case. It is not unreasonable to think of ρ as being smaller than the numerical resolution;
then the existence of the infinite-dimensional problem still follows and the term vanishes in numerical
computations. We follow this practice in the simulation in Section 4.
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198 M. KRUŽÍK AND J. ZIMMER

We remark that gradient of the volume fraction is also used in phase field models for SMAs and
chosen to be 0.0001 in dimensionless units (Shu & Yen, 2008; Artemev et al., 2001).

The gradient terms are of phenomenological nature. They reflect the observation that microscopic
interactions typically lead to non-local macroscopic terms. For example, dislocations interact in models
with plasticity and their microscopic short-range interaction should be captured on the macroscopic
level. There are attempts to derive the corresponding macroscopic terms from statistical mechanics
(Groma et al., 2003; Kratochvı́l et al., 2007; Kratochvı́l & Sedláček, 2008; Kratochvı́l et al., 2009). Yet,
these derivations are very much in their infancy. It is hoped that they will eventually lead to accurate non-
local terms in a macroscopic model. At present, however, the modelling is done on a phenomenological
basis. The the choice of the gradient terms of the plastic variable and the martensitic volume fraction
seems to be reasonable, as they are among the simplest non-local expressions.

In particular, for the volume fraction of the different variants and phases, Mielke & Roubı́ček (2003)
introduce the gradient volume fraction in a purely elastic model of SMAs. We employ the same expres-
sion, ε

∫
Ω ‖∇λ‖2 dx . A macroscopic justification of this term, due to Mielke & Roubı́ček (2003), based

on the Timoshenko–Ericksen model, is given above. Again, one would like to derive the macroscopic
non-local term from microscopic considerations. Yet, this problem seems to be completely open. A
well-established class of models of martensites developed from principles of thermodynamics is due to
Achenbach &Müller (1982) (see also Achenbach &Müller, 1985 and Müller & Seelecke, 1996). There,
the evolution of the number of layers of a phase or variant is considered (equivalently, the fractions of the
variants, respectively, phases), which corresponds to an integrated version of the macroscopic variable
λ. The microscopic evolution is then determined on the basis of statistical mechanics. It is noteworthy
that the microscopic evolution describes only the total fractions, not their local distribution, which is also
recorded in λ. A derivation of the macroscopic non-local term describing the phases and variants from
microscopic principles seems at least as difficult as the corresponding limit passage for dislocations. We
thus use again the simplest possible phenomenological term, ε

∫
Ω ‖∇λ‖2 dx , with ε = 0 in the simula-

tions, and leave the analysis of more complicated non-linear terms to future research. In particular, the
interaction between martensite and dislocations should be addressed in future more refined models.

We consider two kinds of dissipation in our model both of which are ‘rate independent’. The first
kind is related to the austenite–martensite transformation, respectively, the martensite–martensite trans-
formation and will be characterized by the change of ‘volume fraction’ in the composition of the mate-
rial. The second kind is solely related to ‘plastic processes’ in the material, e.g. to cyclic plasticity. To
account for a possible irreversibility, the plastic dissipation may take the value +∞ while the transfor-
mation dissipation is taken to be finite.

1.2.2 Dissipation originating in phase transitions. In order to describe dissipation due to transfor-
mations, we adopt the (to some extent rather simplified) standpoint that the amount of dissipated energy
associated with a particular phase transition between an austenite and a martensitic variant or between
two martensitic variants can be described by a specific energy density (of the dimension J/m3 = Pa).
This viewpoint has been independently adopted in physics (Huo &Müller, 1993; Thamburaja & Anand,
2003; Vivet & Lexcellent, 1998). For an explicit definition of the transformation dissipation, we need to
identify the particular phases or phase variants. To this behalf, we define a Lipschitz continuous mapping
L: Rn×n → ,, where

, :=
{

ζ ∈ R1+M
∣∣ ζ! " 0 for ! = 0, . . . , M, and

M∑

!=0
ζ! = 1

}
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A MODEL OF SMAs TAKING INTO ACCOUNT PLASTICITY 199

is a simplex with M + 1 vertices, with M being the number of martensitic variants. Here, L is related
with the material itself and thus has to be frame indifferent. We assume, beside ζ! " 0 and

∑M
!=0 ζ! = 1,

that the coordinate ζ! of L(F) takes the value 1 if F is in the !th (phase) variant, i.e. F is in a vicinity of
!th well SO(n)U! of ϕ, which can be identified by the stretch tensor F-F being close toU-

! U!. If L(F)
is not in any vertex of ,, then it means that F in the spinodal region where no definite phase or variant
is specified. We assume, however, that the wells are sufficiently deep and the phases and variants are
geometrically sufficiently far from each other that the tendency for minimization of the stored energy
will essentially prevent F to range into the spinodal region. Thus, the concrete form ofL is not important
as long as L enjoys the properties listed above. We remark that L plays the rôle of what is often called
a vector of ‘order parameters’ or a vector-valued ‘internal variable’.

For two states q1 and q2, with q j = (yi , νi , λi , zi ) for j = 1, 2, we now define the dissipation due to
martensitic transformation which ‘measures’ changes in the volume fraction λ ∈ L∞ (

Ω; RM+1). This
dissipation is given by

Dtr (q1, q2) :=
∫

Ω
|λ1(x) − λ2(x)|RM+1 dx, (1.2)

where

λ j (x) :=
∫

Rn×n
L(sF−1

p j (x))ν j,x (ds) =
∫

Rn×n
L

(
s
(
Cof

(
Fp j (x)

))-)
ν j,x (ds), (1.3)

where Cof A := (det(A))A−- is the so-called cofactor matrix of a regular matrix A.

1.2.3 Plastic dissipation. The second source of dissipation is related to temporal changes in the
plastic (hardening) variables gathered in z = (Fp, p). We write Z := SL(n) × Rm × Rn×m × Rm
for the Cartesian product of the set of plastic variables with the set of their time derivatives. We write
(z, ż) for elements of Z . Let us consider a non-negative function δ: Ω × Z → R which is positively
one-homogeneous in the last variable ż, i.e. δ(x, z, ηż) = ηδ(x, z, ż) for all η " 0.The function δ is the
Legendre transform of the indicator function of the elasticity domain. So, knowing the yield function
and therefore the elasticity domain one can calculate δ. Then the ‘dissipation distance’ is (Mielke, 2005)

Dp (z1, z2) = inf
z

{∫ 1

0
δ(x, z(s), ż(s))ds|z: C1[0, 1] → Z with z(0) = z1 and z(1) = z2

}

.

The ‘plastic dissipation’ is then

Dp (q1, q2) :=
∫

Ω
Dp(x, z1(x), z2(x))dx . (1.4)

Consequently, the overall dissipation D (with values in [0, +∞], defined on Q × Q with Q given by
(2.6))

D (q1, q2) := Dp (q1, q2) +Dtr (q1, q2) . (1.5)

We point out that the dissipation is not the sum of two independent terms, the one being purely elastic,
the other purely plastic, as it appears at first glance. Indeed, the transformation dissipation is coupled to
the plastic one since it depends on the plastic term. Hence, the plastic dissipation influences the phase-
transition one as can be seen in (1.3). Technical assumptions on the dissipation are stated at the end of
Section 2.1.

 at U
niversity of Bath on April 8, 2011

im
am

at.oxfordjournals.org
D

ow
nloaded from

 



200 M. KRUŽÍK AND J. ZIMMER

1.2.4 Loading and boundary conditions. In experiments, a specimen occupying the region Ω will
be subjected to external loads. In order to simplify our exposition, we consider only dead body forces
and surface forces. We assume that we are given two disjoint sets Γ0, Γ1 ⊂ ∂Ω , where the (n − 1)-
dimensional Hausdorff measure of Γ0 is positive. We consider Dirichlet boundary conditions y = y0
on Γ0 for some prescribed (time-independent) mapping y0. As for the surface forces acting on Γ1, we
define a linear functional

L(y) :=
∫

Ω
f (x) · y(x)dx +

∫

Γ1

g(x) · y(x)dS, (1.6)

where f : Ω → Rn and g: Γ1 → Rn are the densities of volume and surface forces acting on the
material, respectively. Below, we write L = L(t, y) to indicate the possibility of temporally changing
forces.

1.3 Energetic solution

Combining the previous considerations, we arrive at the energy functional I of the form

I(t, q) :=
∫

Ω

∫

Rn×n
W (x, sF−1

p (x), Fp(x), ∇Fp(x), p(x), ∇ p(x))νx (ds)dx

+ ε ‖∇λ‖2L2(Ω;R(1+M)×n) − L(t, y(t)). (1.7)

So the gradient of the plastic deformation is included, as we work in the realm of strain gradient plas-
ticity (Dillon & Kratochvı́l, 1970; Gurtin, 2000). This introduces a gradient (ruling out the formation of
ever finer plastic microstructure, by introducing a scale on which the plastic microstructure can exist).
Similarly, ever finer elastic microstructures are also not observed in nature. However, here the inclusion
of a gradient term in the model is not universally accepted. We thus do not introduce an elastic gradient
directly but penalize changes in the volume fraction λ, which combines elastic (transformation) terms
with plastic ones. In plasticity, following, e.g. Gurtin (2000), it is not uncommon to restrict the attention
to so-called ‘separable’ materials, i.e.

W (x, Fe, Fp, ∇Fp, p, ∇ p) := ϕ̂(x, Fe) + Wp(Fp, ∇Fp, p, ∇ p). (1.8)

Thus, the elastic and plastic energy contributions are additively coupled. This concept is also used in
linearized elasto-plasticity. However, the analysis of this article does not require this assumption (except
for Remark 3.1). Yet, it may be instructive to have separable materials in mind.

It is often convenient to write

V (q) :=
∫

Ω

∫

Rn×n
W (x, sF−1

p (x), Fp(x), ∇Fp, p(x), ∇ p(x))νx (ds)dx + ε ‖∇λ‖2L2(Ω;R(1+M)×n) .

(1.9)
We seek to analyse the time evolution of a process q(t) ∈ Q during the time interval [0, T ]; Q is

here the configuration space, whose mathematical definition is given in (2.6) below. The following two
properties are key ingredients of the so-called energetic solution introduced by Mielke et al. (2002).

(i) Stability inequality: for every t ∈ [0, T ] and every q̃ ∈ Q, it holds that

I(t, q(t)) ! I(t, q̃) +D(q(t), q̃). (1.10)
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A MODEL OF SMAs TAKING INTO ACCOUNT PLASTICITY 201

(ii) Energy balance: For every 0 ! t ! T ,

I(t, y(t), z(t)) + Var(D, q; [0, t]) = I(0, q(0)) −
∫ t

0
L̇(ξ, q(ξ))dξ, (1.11)

where

Var(D, z; [s, t]) := sup






N∑

j=1
D(q(t j−1), q(t j ))

∣∣ {t j }Nj=0 is a partition of [s, t]






is the ‘variation’ of the dissipation.

DEFINITION 1.1 The mapping q: [0, T ] → Q, with a stable initial datum q(0) ∈ Q, is an ‘energetic
solution’ to the problem (I,D, L) with the energy functional I as in (1.7), the dissipation D of (1.5)
and the load L as in (1.6) if the stability inequality (1.10) and energy balance (1.11) are satisfied for
every t ∈ [0, T ].

2. Mathematical background and assumptions

2.1 Mathematical framework, assumptions and main result

We recall W = W (x, sF−1
p (x), Fp(x), ∇Fp(x), p(x), ∇ p(x)); to abbreviate the notation, let us write

A := sF−1
p , G := ∇Fp and π := ∇ p. We assume that W satisfies the following requirements:

W (x, ·) is continuous for a.e. x ∈ Ω (2.1)
W (·, A, Fp,G, p, π) is measurable for all A, Fp,G, p, π. (2.2)

Next, growth conditions: we assume that there are constants C, c > 0 and α, β, ω > 1 such that

C(1+ |A|α + |Fp|β + |G|β + |p|ω + |π |ω)"W (x, A, Fp,G, p, π)

" c(−1+ |A|α + |Fp|β + |G|β + |p|ω + |π |ω). (2.3)

Thus, the model assumes hardening. Since we work with Young measures, the inclusion of orientation–
preservation is currently out of scope for a rigorous analysis. It is reasonable to require convexity in the
gradient terms G = ∇Fp and π = ∇ p,

W (x, A, Fp, ·, p, ·) is convex for a.e. x ∈ Ω and every A, Fp, p . (2.4)

In order to simplify the notation, we omit the dependence of W on x . However, we point out that the
entire theory developed in this paper applies to spatially inhomogeneous W as well.

In what follows, we suppose that

y ∈ Y(Ω; Rn) := {y ∈ W 1,d(Ω; Rn)|y = y0 on Γ0}, (2.5)

where Γ0 ⊂ ∂Ω with a positive surface measure as described in Section 1.2.4. We recall from that
Section that Γ0 ∩ Γ1 = ∅ by assumption. Further,

P := {(Fp, p) ∈ W 1,β(Ω; Rn×n) × W 1,ω(Ω; Rm)|Fp(x) ∈ SL(n) for a.e. x ∈ Ω}.
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202 M. KRUŽÍK AND J. ZIMMER

Then we look for q ∈ Q := Y(Ω; Rn)×G (Ω; Rn)× L∞ (
Ω; RM+1)×P and restrict the space further

by imposing the ‘admissibility condition’

Q := {q ∈ Q|λ = L 0 ν and ∇ y = I • ν}, (2.6)

where, for almost all x ∈ Ω , [L 0 ν](x) :=
∫
Rn×n L(sF−1

p (x))νx (ds) and [I • ν](x) :=
∫
Rn×n sνx (ds).

We need to define the notion of convergence in this space, and do so as follows.

DEFINITION 2.1 Suppose that {qk}k∈N ⊂ Q, where qk = (yk, νk, λk, zk). We say that qk⇀q :=
(y, ν, λ, z) ∈ Q as k → ∞ if yk⇀y in W 1,d(Ω; Rn), νk⇀∗ν in L∞

w (Ω;M(Rn×n)), λk⇀λ in
W 1,2(Ω; RM+1), zk⇀z in W 1,β(Ω; Rn×n) × W 1,ω(Ω; Rm).

The following lemma shows that the above definition is meaningful.

LEMMA 2.2 Let {qk}k∈N ⊂ Q, where qk = (yk, νk, λk, zk). Let qk⇀q := (y, ν, λ, z). Then λ = L 0 ν.

Proof. We denote Λ(x) :=
∫
Rn×n L(sFp(x)−1)νx (ds) and estimate for any f ∈ L∞ (

Ω; RM+1),
using (1.3),
∣∣∣∣

∫

Ω
(λk(x) − Λ(x)) f (x)dx

∣∣∣∣ !
∫

Ω

∣∣∣∣

∫

Rn×n
L(sF−1

pk (x))νk,x (ds) −
∫

Rn×n
L(sF−1

p (x))νk,x (ds)
∣∣∣∣ | f (x)|dx

+
∣∣∣∣

∫

Ω

[∫

Rn×n
L(sF−1

p (x))νk,x (ds)−
∫

Rn×n
L(sF−1

p (x))νx (ds)
]
f (x)dx

∣∣∣∣ .

Due to our assumption qk⇀q, we have zk⇀z in W 1,β(Ω; Rn×n) and hence F−1
pk → F−1

p strongly in
L1(Ω; Rn×n). The first term on the right-hand side tends to zero as k → ∞, by Lipschitz continuity of
L. The second term on the right-hand side converges to zero by the definition of the weak* convergence
of {νk}k∈N. Altogether we have that λk → Λ weakly in L1(Ω; RM+1). On the other hand, we assumed
that λk → λ strongly in L2(Ω; RM+1) since qk⇀q. Hence, λ = Λ. #

In line with related work (Francfort & Mielke, 2006; Mainik & Mielke, 2008), we impose the fol-
lowing conditions on D:

(i) Lower semicontinuity:

D(q, q̃) ! lim inf
k→∞

D(qk, q̃k), (2.7)

whenever qk⇀q and q̃k⇀q̃ as k → ∞.
(ii) Positivity: If {qk}k∈N ⊂ Q is bounded and

min{D (qk, q) ,D (q, qk)} → 0 as k → ∞ then qk⇀q. (2.8)

Some more assumptions on the dissipation are required to deal with the possibility of the plastic
dissipation becoming infinite. We state suitable restrictions for Dp (see Mainik & Mielke, 2008 for
similar conditions).

ASSUMPTION 2.3 The plastic dissipation Dp satisfies the following conditions:

1. Dp(x, ·, ·): D(x) → [0, +∞) is continuous, where

D(x) := {(z0, z1)|Dp(x, z0, z1) < +∞}. (2.9)
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2. For every R > 0, there is K > 0 such that, for almost all x ∈ Ω , Dp (x, z0, z1) < K if
(z0, z1) ∈ D(x) and |z0|, |z0| < R.

3. There is v∗ ∈ Rm such that for all η, R > 0, there is ρ > 0 such that for almost every x ∈ Ω and
every z, z0, z1 ∈ Rn×n × Rm :

|z − z0| < ρ and (z0, z1) ∈ D(x) implies (z, z1 + (0, ηv∗)) ∈ D(x),

where η → 0 when ρ → 0.

As for the load, we impose the following qualifications:

f ∈ C1([0, T ]; Ld̃(Ω; Rd)) with d̃ "
{

dn
n−d if 1 ! d < n
1 else

and (2.10)

g ∈ C1([0, T ]; Ld̂(Γ1; Rd)) with d̂ "
{
nd−d
nd−n if 1 ! d < n
1 else.

(2.11)

Our main result is the following theorem regarding the existence of an energetic solution.

THEOREM 2.4 Let 1α + 1
β ! 1

d < 1
n , and let Assumption 2.3, (2.1)–(2.4),(2.7)–(2.11) hold. Then there

is a process q: [0, T ] → Q with q(t) = (y(t), ν(t), z(t), λ(t)) such that q is an energetic solution
according to Definition 1.1. for a given stable initial condition q0 ∈ Q.

The proof of this result relies on approximations by time-discrete (incremental) problems con-
structed for a given time step. These are minimization problems over spatial variables. Each mini-
mization problem takes into account the solution obtained for the previous time step while the initial
condition serves as input for the first minimization problem. Hence, the proof is rather constructive.
In addition to Theorem 2.4, we prove various convergence results for the deformation, the martensitic
volume fractions and the plastic variables, see Theorem 3.8.

3. Existence of a solution process

3.1 Incremental problems

We start the mathematical analysis by defining the set of stable states,

S(t) := {q ∈ Q|I(t, q) ! I(t, q̃) +D(q, q̃) for every q̃ ∈ Q}; (3.1)

let us also define

S[0,T ] := ∪t∈[0,T ]{t} × S(t). (3.2)

We say that a sequence {(tk, qk)}k∈N is ‘stable’ if qk ∈ S(tk).
The proof of existence of a rate-independent evolution commonly proceeds via time discretization.

Thus, in a first step, a sequence of incremental problems is defined. Let us remind ourselves of the
notation z := (Fp, p). We define a time discretization 0 = t0 < · · · < tn = T via a time step τ > 0,
chosen in such a way that N = T/τ ∈ N. Let an initial state S(0) 2 q0 =: q0τ ∈ Q be given. For
1 ! k ! N , we find qkτ ∈ Q by solving

minimizeI(tk, q) +D(qk−1τ , q) subject to q ∈ Q. (3.3)
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204 M. KRUŽÍK AND J. ZIMMER

REMARK 3.1 For separable materials (see (1.8)), consider a situation where we know the quasiconvex-
ification Qϕ̂ of ϕ̂ explicitly and set Wp = 0 for simplicity. Then for each point A ∈ Rn×n , we know a
volume fraction λ(A) of the austenite and the martensitic variants. This volume fraction, however, does
not have to be given uniquely. Then the corresponding time-incremental problem for a given time tk
could read: given λk−1 and zk−1 (the volume fraction and plastic variables from the previous time tk−1),
minimize in y, z the functional
∫

Ω
Qϕ̂(x, ∇ y(x)F−1

p (x))dx+
∫

Ω
|L(∇ y(x)F−1

p (x))−λk−1(x)|dx−L(tk, y)+Dp(z, zk−1)−L(tk, y),

where we set λ(x) = L(∇ y(x)F−1
p (x)). However, as we do not know Qϕ̂ in most cases, we define Dtr

using Young measures in (1.2) and the elastic energy would be calculated by
∫
Ω

∫
Rn×n ϕ̂(x, sF−1

p (x))
νx (ds)dx and we have the relaxed problem

minimizey,ν,z

∫

Ω

∫

Rn×n
ϕ̂(x, sF−1

p (x))νx (ds)dx +Dtr(λ, λk−1) +Dp(z, zk−1) − L(tk, y).

Both formulations coincide if νx = δ∇ y(x). This motivates our problem framework defined in terms of
Young measures.

The existence of a solution to the time step problem (3.3) is ensured by the following lemma.

LEMMA 3.2 (Existence). Let (2.1)–(2.4), (2.7), (2.10) and (2.11) hold. Suppose further 1α + 1
β ! 1

d .
Then the problem (3.3) has a solution for all k = 1, . . . , N = T/τ .

Proof. Suppose that qk−1 ∈ Q is known; let {q j } j∈N := {(y j , ν j , λ j , z j )} j ⊂ Q be a minimizing
sequence for q 3→ I(tk, q) +D(qk−1τ , q).

First, note that F−1
p = (cofF)-, where ‘cof’ stands for the cofactor matrix. Suppose that qk−1τ ∈ Q

is known and that {q j } ⊂ Q is a minimizing sequence for q 3→ I(tk, q) +D(qk−1τ , q). We use Young’s
and Hölder’s inequalities as in Mainik & Mielke (2008) to obtain the following pointwise inequality for
any member of the minimizing sequence (the index j is omitted for simplicity)

|FF−1
p | " |F |

|Fp|
" rθr/(r−1)|F |1/r − (r − 1)θ |Fp|1/(r−1)

valid for all r > 1 and all θ > 0.
Taking into account that Fe = FF−1

p ∈ Lα(Ω; Rn×n), Fp ∈ Lβ(Ω; Rn×n) and F ∈ Ld(Ω; Rn×n)
together with Hölder’s inequality, we get for r := α/d > 1 and 1

b := 1
d − 1

α " 1
β

∥∥∥FF−1
p

∥∥∥
α

Lα(Ω;Rn×n)
"

‖F‖α
Ld (Ω;Rn×n)

‖Fp‖α
Lβ(Ω;Rn×n)

" rθr/(r−1) ‖F‖dLd (Ω;Rn×n) − (r − 1)θ
∥∥Fp

∥∥b
Lb(Ω;Rn×n) .

Using this inequality for θ small enough in the lower bound (2.3) of W gives that
∫
Ω

∫
Rn×n |s|dν j x (ds)

dx < +∞ for all j. This together with the Poincaré inequality proves a uniform bound on ‖y j‖W 1,d (Ω;Rn)
for all j ∈ N. Then, again, (2.3) shows that {z j } j∈N is bounded in W 1,β(Ω; Rn×n) × W 1,ω(Ω; Rm).

Hence, as β > 1 and ω > 1, we can extract a weakly converging subsequence (not relabelled)
z j⇀z in W 1,β(Ω; Rn×n) ×W 1,ω(Ω; Rm), with z j = (Fp j , p j ). The strong convergence of z j → z :=
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A MODEL OF SMAs TAKING INTO ACCOUNT PLASTICITY 205

(Fp, p) in Lβ(Ω; Rn×n) × Lω(Ω; Rm) as j → ∞ ensures that Fp(x) ∈ SL(n) almost everywhere.
By weak-9 compactness ν j

∗
⇀ ν ∈ L∞

w (Ω;M(Rn×n)) as j → ∞; L∞
w (Ω;M(Rn×n)) is defined in

Appendix A. However, we must show that ν ∈ G. Each Young-measure component ν j , say, of q j =
(y j , ν j , λ j , Fp j , p j ) is generated by a sequence of gradients {∇ ylj }l∈N of maps ylj ∈ W 1,d(Ω; Rn). As
{Fp j } j∈N is bounded in Lβ(Ω; Rn×n), we obtain from Hölder’s inequality the estimate

‖∇ ylj‖Ld (Ω;Rn×n) ! ‖∇ ylj Fp−1j ‖Lα(Ω;Rn×n)‖Fp j‖Lβ(Ω;Rn×n) ! C.

The first norm on the right-hand side is bounded by Assumption (2.3) so we have that {∇ ylj } j,l∈N is
bounded independently of j, l ∈ N. A diagonalization argument then shows that there is a generating
sequence of gradients for η, so that η ∈ G. Moreover, Lemma 2.2 ensures that λ = L 0 ν. The joint
convexity of W in the gradient arguments G and π and (2.7) ensure that I is sequentially weakly lower
semicontinuous on Q. The existence of a minimum then follows by the direct method of the calculus of
variations. #

3.2 Interpolation in time

We now introduce a piecewise constant interpolation qτ of qkτ := (ykτ , νkτ , λkτ , zkτ ). Namely, qτ (t) := qkτ
if t ∈ [kτ, (k + 1)τ ) and k = 0, . . . , N − 1 = T/τ − 1. Finally, qτ (T ) := qN |τ . Likewise, Lτ (t, q) =
L(kτ, q) is a piecewise constant interpolation of the load L for suitable piecewise constant q. Analo-
gously, Iτ (t, q) = I(kτ, q) is a piecewise constant interpolation of I defined in the same way as Lτ .

PROPOSITION 3.3 (Stability). We make the same assumptions as in Lemma 3.2: let (2.1)–(2.4), (2.7),
(2.10) and (2.11) be satisfied and suppose that 1α + 1

β ! 1
d . Then the problem (3.3) has a solution qτ (t)

which is stable, i.e. for all t ∈ [0, T ] and for every q̃ ∈ Q,
Iτ (t, qτ (t)) ! Iτ (t, q̃) +D (qτ (t), q̃) . (3.4)

Moreover, for all t1 ! t2 from the set {kτ }Nk=0, the following discrete energy inequalities hold if one
extends the definition of qτ (t) by setting qτ (t) := q0 if t < 0.

−
∫ t2

t1
L̇(t, qτ (t − τ))dt ! I(t2, qτ (t2)) + Var(qτ , [t1, t2]) − I(t1, qτ (t1))

!−
∫ t2

t1
L̇(t, qτ (t))dt. (3.5)

Proof. The existence of a solution to (3.3) was proved in Lemma 3.2. The stability estimate (3.4) follows
from the minimizing property of qkτ and the properties of D. Indeed, by minimality of qkτ ,

I(kτ, qkτ ) +D(qk−1τ , qkτ ) ! I(kτ, q̃) +D(qk−1τ , q̃), (3.6)

which immediately implies that

I(kτ, qkτ ) ! I(kτ, q̃) +D(qk−1τ , q̃) −D(qk−1τ , qkτ ). (3.7)

We remark that both dissipative terms satisfy the triangle inequality, Dp(q1, q2) + Dp(q2, q3) !
Dp(q1, q3) and analogously for Dtr. Thus,

D(qk−1τ , q̃) −D(qk−1τ , qkτ ) ! D(qkτ , q̃),

so that (3.4) follows from (3.7).
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206 M. KRUŽÍK AND J. ZIMMER

Next, we demonstrate the validity of the energy inequality (3.5), using arguments of Mielke et al.
(2002). For this part, let us test the stability of qk−1τ with q̃ := qkτ . This gives

I((k − 1)τ, qk−1τ ) ! I((k − 1)τ, qkτ ) +D(qk−1τ , qkτ , )

= I(kτ, qkτ ) + L(kτ, qkτ ) − L((k − 1)τ, qkτ ) +D(qk−1τ , qkτ ). (3.8)

Suppose that 0 ! k1 ! k2 ! N and that t1 = k1τ and t2 = k2τ . A summation of (3.8) over k =
k1 + 1, . . . , k2 yields

k2∑

k=k1+1
[L((k − 1)τ, qkτ ) − L(kτ, qkτ )] ! I(k2τ, qk2τ ) − I(k1τ, qk1τ ) +

k2∑

k=k1+1
D(qk−1τ , qkτ ). (3.9)

We rewrite this inequality in terms of qτ to see that it is the first inequality in (3.5),

−
∫ t2

t1
L̇(t, qτ (t − τ))dt ! I(k2τ, qk2τ ) − I(k1τ, qk1τ ) +

k2∑

k=k1+1
D(qk−1τ , qkτ )

= I(k2τ, qk2τ ) − I(k1τ, qk1τ ) + Var(qτ , [t1, t2])

(the explicit form of Var(qτ , [t1, t2]) holds since we consider a step function). To prove the validity
of the second inequality in (3.5), we rely on the minimality of qkτ when compared with qk−1τ in (3.6).
That is,

I(kτ, qkτ ) +D(qk−1τ , qkτ ) ! I(kτ, qk−1τ ) = I((k − 1)τ, qk−1τ ) + L((k − 1)τ, qk−1τ ) − L(kτ, qk−1τ ).

Similarly as in the previous argument, a summation over k = k1 + 1, . . . , k2 is employed to find that

I(k2τ, qk2τ ) − I(k1τ, qk1τ ) +
k2∑

k=k1+1
D(qk−1τ , qkτ ) !

k2∑

k=k1+1
[L((k − 1)τ, qk−1τ ) − L(kτ, qk−1τ )], (3.10)

so that

I(k2τ, qk2τ ) − I(k1τ, qk1τ ) + Var(qτ , [t1, t2]) ! −
∫ t2

t1
L̇(t, qτ (t − τ))dt,

which is the second inequality in (3.5).

3.3 Limit passage for vanishing time step

The next proposition gives the a priori bounds needed to pass to the limit as the step size goes to zero.

PROPOSITION 3.4 (A priori bounds). Assume that W satisfies the conditions (2.1)–(2.4) and that (2.7),
(2.10), (2.11) are satisfied. Let 1α + 1

β ! 1
d . Further, suppose that W

1,r (Ω; Rd) embeds continuously to
Lr ′

(Ω; Rd) and to Lr̂ (Γ1; Rd). Then there exists a constant κ > 0 such that

‖yτ‖L∞(0,T ;W 1,r (Ω;Rd )) < κ, (3.11)

‖(1⊗ |s|d) • ντ‖L∞(0,T ;L1(Ω)) < κ, (3.12)
‖ντ‖L∞(0,T ;L∞

w (Ω;M(Rn×n))) < κ, (3.13)
‖λτ‖L∞(0,T ;W 1,2(Ω;RM+1))∩BV(0,T ;L1(Ω;RM+1)) < κ, (3.14)

Var(D, qτ ; [0, T ]) < κ, (3.15)
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and for Îτ (t) := Iτ (t, qτ (t)),

‖Îτ‖BV(0,T ) < κ. (3.16)

Proof. We recall from (1.9) that

V (q) =
∫

Ω

∫

Rn×n
W (x, sF−1

p (x), Fp(x), ∇Fp, p(x), ∇ p(x))νx (ds)dx + ε ‖∇λ‖2L2(Ω;R(1+M)×n) .

The growth conditions (2.3) imply that
∫

Ω

∫

Rn×n
|sF−1

p (x)|ανx (ds)dx + ‖Fp‖β
W 1,β (Ω;Rn×n) + ‖p‖ω

W 1,β (Ω;Rm )
! V (q). (3.17)

We use that for some C > 0 since 1α + 1
β ! 1

d ,
∫

Ω
|
∫

Rm×n
sνx (ds)|ddx ! C

∫

Ω

∫

Rm×n
|s|dνx (ds)dx

! C‖Fp‖β
W 1,β(Ω;Rn×n)

∫

Ω

∫

Rm×n
|sF−1

p (x)|ανx (ds)dx ;

this, the fact that ∇ y(x) =
∫
Rn×n sνx (ds) for almost all x ∈ Ω , and the Poincaré inequality yield

together with (3.17)

C‖y‖dW 1,d (Ω;Rn) + ‖Fp‖β
W 1,β (Ω;Rn×n) + ‖p‖ω

W 1,β (Ω;Rm )
! V (q). (3.18)

Since I = V − L by (1.7), we find from (3.10) for k1 = 0 that

V (qk2τ ) − L(k2τ, qk2τ ) − V (q0τ ) + L(0, q0τ ) !
k2∑

k=1
[L((k − 1)τ, qk−1τ ) − L(kτ, qk−1τ )],

which we rewrite as

V (qk2τ ) !
k2∑

k=1
[L((k − 1)τ, qk−1τ ) − L(kτ, qk−1τ )]+ L(k2τ, qk2τ ) + C. (3.19)

Combining this with the estimate (3.18) for q := qk2τ , we find for Yτ := max1!!!N ‖y!
τ‖dW 1,d (Ω;Rd ) that

Yτ !
k2∑

k=1
[L((k − 1)τ, qk−1τ ) − L(kτ, qk−1τ )]+ C. (3.20)

This gives the bound (3.11) since yτ appears in the load on the right-hand side, but only linearly
(see (1.6)); since the power d > 1 on the left-hand side is larger, (3.11) follows. With (3.11) at our dis-
posal, we immediately obtain (3.12), and (3.13)–(3.16) are easy (e.g.∇λ is bounded in L2(Ω,R(M+1)×n),
and λ is bounded as a volume fraction; the BV bound comes from its contribution in the dissipation). #

 at U
niversity of Bath on April 8, 2011

im
am

at.oxfordjournals.org
D

ow
nloaded from
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PROPOSITION 3.5 Let I be weakly sequentially lower semicontinuous. Suppose that for all (t∗, q∗) ∈
[0, T ] × Q, for all stable sequences {(tk, qk)}k∈N with tk → t∗ and qk⇀q∗ in the sense of Definition
2.1, there is a sequence {q̃k}k∈N ⊂ Q such that for all q̃ ∈ Q

lim sup
k→∞

[I(tk, q̃k) +D(qk, q̃k)] ! I(t∗, q̃) +D(q∗, q̃). (3.21)

Then, I is weakly continuous along stable sequences and q∗ ∈ S(t∗).

Proof. We follow the proof of Mainik & Mielke (2008, Proposition 4.2). Take q̃ = q∗ in (3.21); by
stability and then (3.21), we obtain

lim sup
k→∞

I(tk, qk) ! lim sup
k→∞

[(I(tk, q̃k) +D(qk, q̃k)] ! I(t∗, q̃) +D(q∗, q̃) = I(t∗, q∗).

We have further

lim
k→∞

‖I(tk, qk) − I(t∗, qk)‖ = lim
k→∞

‖L(tk, qk) − L(t∗, qk)‖ = 0

due to the Assumptions (2.10) and (2.11) on f and g, respectively.
Since I is weakly lower semicontinuous, it follows that

lim inf
k→∞

I(tk, qk) = lim inf
k→∞

[I(tk, qk) − I(t∗, qk)]+ lim inf
k→∞

I(t∗, qk) " I(t∗, q∗).

This together with (3.21) gives weak continuity of I(tk, qk) → I(t∗, q∗). Finally, we have for every
q̃ ∈ Q

I(t∗, q∗) = lim
k→∞

I(tk, qk) ! lim inf
k→∞

[I(tk, q̃k) +D(qk, q̃k)] ! I(t∗, q̃) +D(q∗, q̃).

The arbitrariness of q̃ ∈ Q shows the stability of q∗. #
The key point in the existence proof for a rate-independent process is to show the validity of (3.21).

Let us suppose for the moment that irreversibility for the plastic process is excluded, i.e. ∞ is not
contained in the range of D defined in (1.4), i.e. Dp: Q×Q → [0, +∞). Then it is sufficient to assume
that for ε > 0 small enough

Dp(x, z1, z2) ! c(x) + C(|Fp1|β
∗−ε + |Fp2|β

∗−ε + |p1|ω
∗−ε + |p2|ω

∗−ε)

holds, with

β∗ :=
{

nβ
n−β if n > β,

1+ ξ else, for some ξ > 0
and ω∗ :=

{
nω
n−ω if n > ω,

> 1+ ξ else, for some ξ > 0.

Then the compact embedding ensures continuity of Dp. Similar, Dtr is continuous by compactness.
Thus, the dissipation D defined in (1.5) is continuous.

However, we allow irreversibility by including∞ in the range ofDp, so thatDp:Q×Q → [0, +∞],
and we thus must be more careful. Assumption 2.3 will play a central rôle in the next argument. We recall
the notation z j := (Fj , p j ) ∈ Rn×n × Rm for j = 1, 2 used in that assumption.
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PROPOSITION 3.6 Let β,ω > n. Let Assumption 2.3 hold. Then (3.21) holds.

Proof. IfD(q∗, q̃) = +∞ in (3.21), then nothing is to show. So we can assume thatDp(q∗, q̃) ∈ R; then
(z∗, z̃) ∈ D(x), with D(x) defined in (2.9). If qk⇀q∗ as k → ∞, then due to the compact embedding

ρk := ‖Fpk − Fp∗‖C(Ω̄;Rn×n) + ‖pk − p∗‖C(Ω̄;Rm ) → 0.

Thus, there is R > 0 such that ‖zk‖+|z∗|+|z̃| < R if k is large enough. We define z̃k := (F̃p, p̃+ηkv∗),
where ηk relates to ρk as in Assumption 2.3(3). Then (zk, z̃k) ∈ D(x) by Assumption 2.3(3) with
z0 := z∗ and z1 := z̃. The continuity of Dp (Assumption 2.3(1)) gives the pointwise convergence
Dp(x, zk, z̃k) → Dp(z, z∗, z̃). Furthermore, we have ‖zk‖ < R and ‖z̃k‖ < R in addition to the
property (zk, z̃k) ∈ D(x) established above. Condition 2 of Assumption 2.3 together with the Lebesgue
dominated convergence theorem implies that Dp(qk, q̃k) → Dp(q∗, q̃). Further, Dtr is continuous by
compactness. Thus, the dissipation D defined in (1.5) is continuous. As for I, Assumptions (2.10)
and (2.11) imply that (3.21) is fulfilled with equality. #

The following lemma is taken from Mielke (2005, Theorem 5.21). Let us first denote X :=
Lβ(Ω; Rn×n) × Lω(Ω; Rm). Note that if (2.7) and (2.8) hold for Dp in P, then they hold in X with
the strong convergence in X.

LEMMA 3.7 (Helly for plastic dissipation). Let Dp: X × X → [0, +∞]. Let K be a compact subset
of X. Then for every sequence {zk}k∈N, zk : [0, T ] → K for which supk∈N Var(Dp, zk ; [0, T ]) < C
with some C > 0, there exists a subsequence (not relabelled), a function z: [0, T ] → K and a function
δ: [0, T ] → [0,C] such that

1. Var(Dp, zk ; [0, t]) → δ(t) for all t ∈ [0, T ],
2. zk → z for all t ∈ [0, T ] and
3. Var(Dp, z; [t0, t1]) ! limt↘t1 δ(t) − limt↗t0 δ(t) for all 0 ! t0 < t1 ! T , with the limits
evaluated as δ(0) = 0, respectively, δ(T ) in the cases t0 = 0, respectively, t1 = T .

The assertion of the following theorem includes also the assertion of Theorem 2.4.

THEOREM 3.8 (Existence of a rate-independent process). Let 1α + 1
β ! 1

d < 1
n . Suppose further

that (2.1)–(2.4), (2.7), (2.8) (2.10) and (2.11) hold. Then there exists a process q: [0, T ] → Q with
q(t) = (y(t), ν(t), z(t), λ(t)) such that q is an energetic solution in the sense of Definition 1.1. The
following limit passages are also valid:

(i) for a t-dependent (not relabelled) subsequence, w*-lim ντ (t) = ν(t) in L∞
w (Ω;M(Rn×n))

for all t ∈ [0, T ],
for a t-dependent (not relabelled) subsequence, w-limτ→0 yτ (t) = y(t) in W 1,d(Ω; Rn) for
all t ∈ [0, T ],

(ii) for a (not relabelled) subsequence, w*-limτ→0 λτ (t) = λ(t) in L∞(Ω; RM+1) ∩ W 1,2

(Ω; RM+1) for all t ∈ [0, T ] and λ ∈ BV([0, T ]; L1(Ω; RL)),
(iii) for a (not relabelled) subsequence, limτ→0 zτ (t) = z(t) in X for all t ∈ [0, T ],
(iv) for a (not relabelled) subsequence, limτ→0 Iτ (t, qτ ) = I(t, q(t)) for all t ∈ [0, T ] and
(v) for a (not relabelled) subsequence, limτ→0 Var(D, qτ ; [0, t]) = Var(D, q; [0, t]) for all t ∈

[0, T ].

Proof. The proof is divided into several steps and combines ideas from Francfort & Mielke (2006) and
Mielke (2005).
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Step 1. The points (i), (ii) and (iii) follow from the a priori estimates in Proposition 3.4 and Lemma 3.7
(recall that λ is a volume fraction and thus trivially bounded in L∞). Altogether, Step 1 implies the exis-
tence of the limit q(t) = (y(t), ν(t), λ(t), z(t)). Moreover, (3.12) implies that

∫
Ω

∫
Rn×n |s|dν(t)(ds)dx <

+∞ for all t ∈ [0, T ]. As ∇ yτ (t, x) =
∫
Rn×n sντ,x (t)(ds) and using Lemma 2.2, we immediately get

that q ∈ Q.
We set S(t, τ ) := mink∈N∪{0}{kτ |kτ " t}. Then limτ→0 S(t, τ ) = t ; then qτ (t) := qτ (S(t, τ )) ∈

S(S(t, τ )). Moreover, by our assumptions on D (Assumption 2.3 and Proposition 3.6), we know that
(3.21) holds. Therefore, q(t) ∈ S(t), i.e. the limit is stable by Proposition 3.5. Proposition 3.5 also
implies (iv).
Step 2. We have qτ (t) = qτ (kτ) if 0 ! t − kτ ! τ . Hence, using (3.5) in the first and in the second

line, we find that for some C,C1 > 0

I(t, qτ (t)) + Var(D, qτ ; [0, t]) ! I(kτ, qτ (kτ)) + Var(D, qτ ; [0, kτ ]) + Cτ

! I(0, qτ (0)) −
∫ kτ

0
L̇(s, qτ (s))ds + Cτ

! I(0, qτ (0)) −
∫ t

0
L̇(s, qτ (s))ds + C1τ.

Note also, θτ (t) := L̇(t, qτ ) is bounded in L∞(0, T ) by (2.10) and (2.11), so that there is a weak*
limit of a subsequence (not relabelled), which we denote θ . We set θi(t) := lim infτ→0 θτ (t). Further,
using Lemma 3.7(i) and the weak lower semicontinuity of the variation, we get in the limit τ → 0

I(t, q(t)) + δ(t) + Var(Dtr, q; [0, t]) ! I(0, q(0)) −
∫ t

0
θ(s)ds. (3.22)

As δ(t) " Var(Dp, q; [0, t]) by Lemma 3.7 and by Fatou’s lemma
∫ t
0 θ(s)ds "

∫ t
0 θi(s)ds for a.e.

t ∈ [0, T ], we obtain

I(t, q(t)) + Var(D, q; [0, t]) ! I(0, q(0)) −
∫ t

0
θi(s)ds.

We observe that θi(s) = L̇(s, q(s)). Altogether, we get the upper energy estimate

I(t, q(t)) + Var(D, q; [0, t]) ! I(0, q(0)) −
∫ t

0
L̇(s, q(s)ds. (3.23)

In order to get the lower estimate, we exploit the fact that q(t) is stable for all t ∈ [0, T ]. Take a
(possibly non-uniform) partition of a time interval [t1, t2] ⊂ [0, T ] such that t1 = ϑ0 < ϑ1 < ϑ2 <
ϑK = t2 such that maxi (ϑi − ϑi−1) =: ϑ → 0 as K → ∞. We test the stability of q(ϑk−1) with q(ϑk)
for k = k1 + 1, . . . , k2. Analogously to (3.9), this yields

K∑

k=1
[L(ϑk−1, q(ϑk)) − L(ϑk, q(ϑk))] ! I(t2, q(t2)) − I(t1, q(t1)) +

K∑

k=1
D(q(ϑk−1), q(ϑk)). (3.24)

Hence,
K∑

k=1
−

∫ ϑk

ϑk−1
L̇(s, q(ϑk))ds ! I(t2, q(t2)) − I(t1, q(t1)) + Var(D, q; [t1, t2]). (3.25)

 at U
niversity of Bath on April 8, 2011

im
am

at.oxfordjournals.org
D

ow
nloaded from

 



A MODEL OF SMAs TAKING INTO ACCOUNT PLASTICITY 211

Finally, we observe that
K∑

k=1

∫ ϑk

ϑk−1
L̇(s, q(ϑk))ds =

K∑

k=1
L̇(ϑk, q(ϑk))(ϑk − ϑk−1) +

K∑

k=1

∫ ϑk

ϑk−1
(L̇(s, q(ϑk)) − L̇(ϑk, q(ϑk)))ds.

(3.26)

The second term on the right-hand side of (3.26) tends to zero as ϑ → 0 because the time derivative of
external forces is uniformly continuous in time by (2.10) and (2.11). The first term on the right-hand side
converges to

∫ t2
t1 L̇(s, q(s))ds (Dal Maso et al., 2005, Lemma 4.12). Thus, (3.25) and (3.26) together

yield the lower energy bound

−
∫ t2

t1
L̇(s, q(s))ds ! I(t2, q(t2)) − I(t1, q(t1)) + Var(D, q; [t1, t2]). (3.27)

The upper and lower estimates (3.23) and (3.27) combined yield the energy balance

I(t, q(t)) + Var(D, q; [0, t]) = I(0, q(0)) −
∫ t

0
L̇(s, q(s)ds. (3.28)

Step 3. We obtain (the first inequality relies on (3.27) and the observation θi(s) = L̇(s, q(s)) made in
Step 2, the second inequality is Lemma 3.7(3), while the third estimate is (3.22))

I(0, q(0)) −
∫ t

0
θi(s)ds ! I(t, q(t)) + Var(D, q; [0, t])

! I(t, q(t)) + δ(t) + Var(Dtr, q; [0, t])

! I(0, q(0)) −
∫ t

0
θ(s)ds ! I(0, q(0)) −

∫ t

0
θi(s)ds. (3.29)

Thus, all inequalities in (3.29) are equalities and consequently, we have shown that (v) holds. #

4. Numerical example

To provide a numerical validation of the model, let us consider the small strain version of the model
studied in this article. Thus, with u: Ω → Rn being the displacement, let e = 1

2 (∇u + ∇u-) be the
small strain tensor and Ep: Ω → Rn×n a plastic strain which is supposed to be trace free. Consider a
simple two-phase problem with the energy well corresponding to the first phase positioned at the origin
and the well corresponding to the second phase placed at a given symmetric matrix 0 8= ε ∈ Rn×n . If
the tensor of elastic constants C of both phases is considered equal, we define the double well energy
density (Kohn, 1991) as

ϕ̂(e) := 1
2
min{Ce: e,C(e − ε): (e − ε) + α},

where α ∈ R is a vertical shift controlling a mutual position of the bottoms of the two wells and typically
depends on the temperature. The colon ‘:’ denotes the dot product on Rn×n . Obviously, ϕ̂ is not convex.
If ε = a ⊗ b + b ⊗ a for some vectors a, b ∈ Rn , the relaxation of this non-convex energy at a given
volume fraction λ of the second phase is

e 3→ 1
2
C(e − λε): (e − λε) + λα
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FIG. 2. Evolution of the deformation of the specimen. The load increases from left to right in the upper row and then decreases
again (lower row, left to right). White colour denotes austenite, black martensite. The grey scale indicates the volume fraction of
the martensite on every element. The displacement is magnified by a factor of two.

as shown by Kohn (1991). In this example, we put q := (u, λ, z), where z := (Ep, p) with p ∈ R a
single hardening variable. Hence, the stored energy functional reads

I (q) := 1
2

∫

Ω
[C(e − λε − Ep): (e − λε − Ep) + p2 + αλ]dx − L(u),

where L is a linear continuous functional measuring work of external forces. As elsewhere (Carstensen
& Plecháč, 2000), the energy dissipation related to the phase transition is simply defined as (h1 > 0)

Dtr(q1, q2) := h1
∫

Ω
‖λ1(x) − λ2(x)‖dx .

As for the plastic dissipation, we follow Mielke (2003) and take for h2 > 0 and h̃2 > 0

Dp(q1, q2) :=
{∫

Ω h2|Ep1 − Ep2 |dx if p2 " p1 + h̃2|Ep1 − Ep2 |,
+∞ else.

Sending h2 → ∞ models the problem without plastic dissipation while setting h1 = +∞ fixes the
volume fraction λ and our model simplifies to usual linearized elastoplasticity of the ‘mixed’ mate-
rial. Instead of external forces the evolution can be also driven by time-dependent boundary conditions
(Mainik & Mielke, 2008; Mielke, 2005).

In computational examples shown in Figs. 2–3, we consider a simple 2D tensile experiment, n = 2,
with a specimenΩ = (0, 1)× (0, 2), over the time interval [0, 5]. The specimen is fixed on (0, 1)×{0};
a prescribed time-dependent 1-periodic surface force g acts in the vertical direction on (0, 1) × {2}, i.e.
g = (0, g2) with

g2(t) =
{
5.108t if 0 ! t ! 0.5
−5.108t + 5.108 if 0.5 ! t ! 1.

As to the material, we consider a cubic to tetragonal stress-induced transformation with

ε := diag(−0.05, 0.05) = 10−2((5, 5) ⊗ (−1, 1) + (−1, 1) ⊗ (5, 5))

 at U
niversity of Bath on April 8, 2011

im
am

at.oxfordjournals.org
D

ow
nloaded from

 



A MODEL OF SMAs TAKING INTO ACCOUNT PLASTICITY 213

FIG. 3. The 22-component of the stress versus the 22-component of the strain during 6 cycles.

with h1 = 8 MPa, h2 = 10 MPa, h̃2 := 2 MPa and α = 5 MPa. The tensor of elastic constants is, for
simplicity, reduced to the Young modulus (10 GPa) and the Poisson ration (0.3). The initial condition is
always λ = p = Ep = 0, so that the material is initially in the austenite phase and without any plastic
deformation. Computational results are shown in Figs. 2 and 3.

The numerical values for the Poisson ratio and Young’s modulus are chosen to be typical for elastic
solids; no attempt has been made to fit them to experimental data to get qualitative agreement between
simulation and experiment rather than quantitative agreement. This is since a full numerical study of
cubic-to-monoclinic transformation in the setting of multiplicative elastoplasticity is a research topic in
its own right.
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Appendix A. Young measures

We briefly recall the concept of Young measures (Young, 1937) and follow the presentation of Kružı́ &
Zimmer (2010). Young measures describe the limit of a sequence {yk}k∈N of functions yk : Ω → Rd
which converges weakly in Lq(Ω; Rd) for 1 ! q < ∞ or weakly∗ if q = ∞. The precise concept is as
follows. A ‘Young measure’ on a bounded domain Ω ⊂ Rn is a weakly* measurable mapping

Ω → Prob(Rd), x 3→ νx ,

with values in the probability measures. We recall that a mapping with values in the Radon measures is
‘weakly* measurable’ if for any f ∈ C0(Rd), the mapping

Ω → R, x 3→ 〈 f, νx 〉 :=
∫

Rd
f (s)νx (ds)

is measurable in the usual sense. We denote the set of all Young measures by Y(Ω; Rd).
It is known that Y(Ω; Rd) is a convex subset of L∞

w (Ω; M(Rd)) ∼= L1(Ω; C0(Rd))∗, where
L∞
w (Ω; M(Rd)) is the space of weakly* measurable bounded functions. The ‘parametrized’ Young
measure theorem (Schonbek, 1982) states that for every sequence {yk}k∈N which is bounded in
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L∞(Ω; Rd), there exists a subsequence (denoted by the same indices for notational simplicity) and
a Young measure ν = {νx }x∈Ω ∈ Y(Ω; Rd) such that for every continuous function f : Rd → R,

f (yk)
9

⇀ x 3→ 〈 f, νx 〉 weakly* in L∞(Ω), (A.1)

where

〈 f, νx 〉 :=
∫

Rd
f (s)νx (ds) (A.2)

is the ‘expectation’ of f . Let Y∞(Ω; Rd) denote set of all Young measures that are generated by taking
all bounded sequences {yk}k∈N in L∞(Ω; Rd).

The above concept is applicable if {yk}k∈N is uniformly bounded in L∞(Ω; Rd). If in addition to
the uniform bound in L∞(Ω; Rd), yk⇀y in Lq(Ω; Rd) with 1 ! q < ∞, then yk → y if and only if
the corresponding Young measure is a Dirac mass, νx = δy(x). Non-Dirac Young measures thus record
possible oscillations in the limit process.

The assumption that {yk}k∈N is bounded in L∞(Ω; Rd) can be relaxed to the assumption of such a
bound in Lq(Ω; Rd) with 1 < q < ∞. The parametrized Young measure theorem is then valid under
stronger growth conditions on the non-linearity f . The precise formulation has been given by Schonbek
(1982, Theorem 2.2) (see also Ball, 1989 for a general formulation of the parametrized Young measure
theorem). Namely, for every sequence {yk}k∈N which is uniformly bounded in Lq(Ω; Rd) for some
q > 1, there exists a subsequence, still indexed by k for notational convenience, and a Young measure
ν = {νx }x∈Ω ∈ Y(Ω; Rd) such that for every f ∈ C(Rd) with

{ f (yk)}k∈N is weakly relatively compact in L1(Ω) (A.3)

the following holds in L1(Ω; Rd):
f (yk)⇀〈 f, νx 〉. (A.4)

We say that {yk}k∈N generates ν if (A.4) holds; we denote the set of all Young measures obtained as
limits of bounded sequences in Lq(Ω; Rd) by Yq(Ω; Rd). If {yk}k∈N is bounded in W 1,q(Ω; Rd), then
the set of Young measures generated by subsequences of {∇ yk}k∈N will be denoted Gq(Ω; Rd×d). In
the spirit of (A.1), we extend the energy V to V̄ (ν) :=

∫
Ω

∫
Rd×d ϕ(s)νx (ds)dx for ν ∈ Gq(Ω; Rd×d).
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