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D. Sidorov,V. Šḿıdl, et al. () Autoregressive model for On-line Oscillation detection AS seminar, October 17, 2010 1 / 12



Outline

Power Systems Monitoring. Problem Statement

State-of-the-art Techniques

Stabilized Forgetting Approach for On-line Oscillations Detection

Key Steps of the Proposed Algorithm

Testing on Simulated Data

Testing on Real World Data (500kV Power Grid)

Conclusions
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Introduction

Detailed modelling of oscillations

Factors influencing oscillations:

the position of the subsystem in the whole power system.

the distribution of the natural damping elements such as series resistance of
the lines, and shunt resistance of the loads.

the number and position of special damping controllers.

Blind oscillation detection
all variables are monitored on-line,

oscillation is a result of unknown cause,

detection algorithm is designed to warn the operators as early as possible.
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State-of-the-art Techniques

1 the observed process is locally approximated by a linear system

locality: window shapes (square, triangle, exponential).

2 parameters of the linear system are estimated

Kalman filter: requires the noise variance to be known
RLS: variance can be estimated

3 poles of the system are computed from the estimates

typically only the point estimates are considered

4 stability and oscillatory behavior is analyzed

setting thresholds on closeness to stability border

Our approach:

1 Exponential window

2 Autoregressive model with unknown variance

3 Full posterior density on parameters

4 Probability of stabable poles computed
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Model of the signal

Model

yt = atyt−1 + btyt−2 + ct + σtet (1)

where yt is the observed signal, at , bt , ct , σt are its unknown parameters, and et is
Gaussian noise with zero mean and unit variance, et = N (0, 1).
which defines PDF of the observed random variable yt :

p(yt |yt−1, yt−2, at , bt , σt) = N (atyt−1 + btyt−2, σ
2). (2)

Bayesian treatment

Estimation of time-invariant system is RLS (Gauss-inverse-Wishart posterior).

Can be extended to time-invariant system by model of parameter evolution

Alternatively, we may choose to model the parameters as random walk,
leading to a method known as forgetting.
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Stabilized Forgetting

Regularized exponential forgetting is formalized as follows:

p(at , bt , σt |y1, . . . , yt) ∝ p(yt |yt−1, yt−2, at , bt , σt)

× p(at−1, bt−1, σt−1|y1, . . . , yt−1)φ (3)

× p̄(at−1, bt−1, σt−1|y1, . . . , yt−1)1−φ.

Here, p̄(·) denotes an alternative probability of the parameters.
It preserves posterior density of the Normal-inverse-Gamma type,

p(at , bt , σt) = N iG(Vt , νt), (4)

the statistics of which are as follows:

Vt = φVt−1 + [yt , yt−1, yt−2, 1]′[yt , yt−1, yt−2, 1] + (1− φ)V̄ , (5)

and νt = φνt−1 + 1 + (1− φ)ν̄. Here, V̄ , ν̄ denote statistics of the alternative pdf.
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Probability of oscilations

The poles of the system are:

p1,2 =
at ±

√
a2
t + 4bt

2
.

The system is oscillating when:
a2
t < −4bt

and the system is unstable when |p1,2| > 1, i.e.

|p1,2| =

∣∣∣∣(at2 )2

− a2
t + 4bt

4

∣∣∣∣ = |bt | > 1.
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Detection Algorithm

Key Steps of the Algorithm:

Off-line: choose initial alternative statistics, V̄ , ν̄ and forgetting factor φ.
On-line: at each time t do:

1 update statistics V , ν,

2 compute posterior marginal estimates of parameters ât , b̂t , var(a), var(a),

3 compute probability of unstable oscillations as follows

Pr(unstab.oscil .) = Pr(at < 2)Pr(bt < −1)

=
1

2

(
1− erf

ât − 2√
2var(at)

)
1

2

(
1− erf

b̂t + 1√
2var(bt)

)
(6)
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Simulation studies

Area 1 and Area 2 are sending and receiving subsystems accordingly.

From 50 to 115 second, increase of active power output of G2 from 500 MW
to 660 MW. Active power increase rate 2.5 MW per second;

From 165 to 230 second, decrease of active power output of G2 from 660
MW to 500 MW. Active power decrease rate 2.5 MW per second.

Bus 8 is monitored.
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Simulation studies
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Real data
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Conclusions

1 Oscillation detection algorithm is based on autoregressive model
1 universal black-box model for oscillations
2 more detailed modelling would yield more informative models
3 allows estimation of the noise variance
4 forgetting factor is the only tuning parameter

2 Statistical approach
1 full posterior density is evaluated, posterior risk of oscillations
2 allows hypotheses testing: what is more likely cause of oscillations
3 more detailed modelling of the forgetting factor is being developed

D. Sidorov,V. Šḿıdl, et al. () Autoregressive model for On-line Oscillation detection AS seminar, October 17, 2010 12 / 12


