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Breast Cancer and Mammographic Screening

Statistical Data of Breast Cancer:

breast cancer happens to about 8% of women during their lifetime

malignant findings are rare: about 1 to 3 in 1000 screening mammograms

5 to 10% of findings is proposed for surgical verification by biopsy

expectably: about 60 to 80% of biopsies result in benign diagnoses

retrospective examinations: about 10 to 20% false negative results

Meaning of Mammographic Screening:

even hardly palpable breast tumors can make metastases

⇒ early detection of malignant lesions is extremely important

mammographic screening is the only effective tool to decrease
the breast cancer mortality rates

⇒ screening programs: millions of mammograms in one year

⇒ strong motivation for computer-aided evaluation
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Local Evaluation of Screening Mammograms

Idea of the log-likelihood image: LITERATURE

to emphasize mammographic lesions as “untypical” locations of high
“novelty” and facilitate diagnostic evaluation of screening mammograms

local properties: inside pixels of a square window with trimmed corners
x = (x1, x2, . . . , xN) ∈ X , xn ≈ grey-levels of the window inside

local statistical model: multivariate probability density P(x)
log P(x) ≈ to measure how unusual is the window inside x

METHOD: approximation of the density P(x) by Gaussian mixture

data set: by scanning the mammogram with the search window

EM algorithm: to estimate the Gaussian mixture P(x)

log-likelihood image: log P(x) displayed as grey-levels at window center

interpretation: dark grey-levels indicate “suspect” locations
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Estimation of Local Statistical Model

Gaussian mixture of product components:

P(x) =
M∑

m=1

wmF (x|µm,σm) =
M∑

m=1

wm

N∏
n=1

[
1√

2πσmn

exp{− (xn − µmn)2

2σ2
mn

}
]

log-likelihood function: (data set S by scanning the image)

L =
1

|S|
∑
x∈S

log

[
M∑

m=1

wmF (x|µm,σm)

]

EM iteration equations: (initial parameters chosen randomly)

q(m|x) =
wmF (x|µm,σm)∑
j∈M wjF (x|µj ,σj)

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

µ
′

mn =
1

w ′
m|S|

∑
x∈S

xnq(m|x), (σ
′

mn)2 =
1

w ′
m|S|

∑
x∈S

(xn − µ
′

mn)2q(m|x)

NOTATION: w
′

m, µ
′

mn, σ
′

mn ≈ new parameter values
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Computational Experiments

local statistical model: estimated from a single mammogram

each mammogram is evaluated individually

mirror transform is applied to right-hand-part of images
to utilize the underlying symmetry

⇒ the method need not be trained by other images

⇒ it is not confronted with high natural variability of mammograms

source database: University of South Florida
http://marathon.csee.usf.edu/Mammography/Database.html

chosen search window: square window of 13 x 13 pixels with trimmed
corners, dimension of x is N = 145 (= 169 – 4× 6)

model data set: by scanning the four-view mammogram
with the search window (|S| ≈ 105 − 106)

computing time: cca 2 hours for 36 components
but the computation can be parellelized



Screening Local Evaluation Aspects Structural model Conclusion Statistical Model Computational Experiments Log-Likelihood Image

C-0016-1: segmentally distributed calcification
original image log-likelihood image

Remark: Pixel grey levels log P(x) defined by 145 neighboring pixels
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C-0002-1: segmentally distributed calcification

original image log-likelihood image

Remark: Large calcification emphasized by contour lines.
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C-0143-1: mass, irregular shape, ill-defined margins

original image log-likelihood image
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Identification of “Micro-Calcifications” by Spots

original micro-calcifications corresponding dark spots

Remark: window position containing a light pixel
⇒ implies decreased value of log P(x)
⇒ light pixel is identified as a window-like dark spot
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Identification of “Masses” by Contour-Lines

example of screening mammogram containing suspect masses

Remark: The masses may be quite subtle, may have smooth boundaries and
different shapes. Detection and classification of masses is more difficult than
detection of micro-calcifications.
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Identification of “Masses” by Contour-Lines

contour lines around “masses” and at the mammogram boundaries

Remark: In high-dimensional spaces (N ≈ 102) the log-likelihood values
log P(x) are typically dominated by a single component of the mixture which
is most adequate to the underlying region.
The “switching” of components at the boundaries of different regions is
accompanied by decreased log P(x) values which produce contour lines.
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Structural Mixture Model

IDEA: to exclude the less informative ”noisy”variables in components

binary structural parameters: φm = (φm1, . . . , φmN) ∈ {0, 1}N

F (x|m) =
∏
n∈N

fn(xn|m)φmn fn(xn|0)1−φmn ,
∑

m∈M

∑
n∈N

φmn = s < MN

φmn = 0 ⇒ fn(xn|m) replaced by common fixed density fn(xn|0) (≈ Pn(xn))

P(x) =
∑

m∈M
F (x|m)f (m) = F (x|0)

∑
m∈M

G (x|m,φm)f (m)

G (x|m,φm) =
∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

, F (x|0) =
∏
n∈N

fn(xn|0) ≈ background

the fixed background density F (x|0) reduces in Bayes formula:

p(ω|x) =
P(x|ω)p(ω)

P(x)
=

∑
m∈Mω

G (x|m,φm)f (m)∑
j∈M G (x|j ,φj)f (j)

≈
∑

m∈Mω

G (x|m,φm)f (m)

Remark: The model performs component specific feature selection
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Structural Optimization - General EM Algorithm

structural optimization can be included into EM algorithm

L =
1

|S|
∑
x∈S

log P(x) =
1

|S|
∑
x∈S

log

[ ∑
m∈M

F (x|0)G (x|m,φm)f (m)

]
E-step:

q(m|x) =
f (m)G (x|m,φm)∑M
j=1 f (j)G (x|j ,φj)

, m = 1, 2, . . . ,M

M-step:
f

′
(m) =

1

|S|
∑
x∈S

q(m|x), m = 1, 2, . . . ,M, x ∈ S

G
′
(.|m,φ

′

m) = arg max
G(.|m,φm)

{ 1

|S|
∑
x∈S

q(m|x) log F (x|0)G (x|m,φm)
}

⇒ G
′
(.|m,φ

′

m) = arg max
G(.|m,φm)

{ 1

|S|
∑
x∈S

q(m|x) log G (x|m,φm)
}

Remark. EM algorithm transforms the difficult problem of maximization of
the mixture log-likelihood function L to the repeated maximization of the
weighted log-likelihood functions of mixture components.
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Proof of the Monotonic Property of EM Algorithm

sequence of log-likelihood values {L(t)}∞t=0 is nondecreasing:

L(t+1) − L(t) ≥ 0, t = 0, 1, 2, . . .

In view of Kullback-Leibler information divergence we can write

1

|S|
∑
x∈S

I (q(·|x)||q
′
(·|x)) =

1

|S|
∑
x∈S

[
M∑

m=1

q(m|x) log
q(m|x)

q′(m|x)

]
≥ 0

making substitution for q(m|x), q
′
(m|x) in the logarithm we obtain:

1

|S|
∑
x∈S

M∑
m=1

q(m|x) log
P

′
(x)

P(x)
+

1

|S|
∑
x∈S

M∑
m=1

q(m|x) log

[
f (m)G (x|m,φm)

f ′(m)G ′(x|m,φ′

m)

]
≥ 0

whereby the first sum corresponds to the increment of L:

1

|S|
∑
x∈S

M∑
m=1

q(m|x) log
P

′
(x)

P(x)
=

1

|S|
∑
x∈S

log
P

′
(x)

P(x)
= L

′
− L.
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Proof of the Monotonic Property of EM Algorithm

making substitution for the increment we obtain the inequality

L
′
− L ≥ 1

|S|
∑
x∈S

M∑
m=1

q(m|x) log

[
f

′
(m)G

′
(x|m,φ

′

m)

f (m)G (x|m,φm)

]

which can be rewritten in the form

L
′
−L ≥

M∑
m=1

[
1

|S|
∑
x∈S

q(m|x)

]
log

f
′
(m)

f (m)
+

M∑
m=1

1

|S|
∑
x∈S

q(m|x) log
G

′
(x|m,φ

′

m)

G (x|m,φm)

again, by using the substitution from the M-step, we can write

M∑
m=1

[
1

|S|
∑
x∈S

q(m|x)

]
log

f
′
(m)

f (m)
=

M∑
m=1

f
′
(m) log

f
′
(m)

f (m)
≥ 0.

since Kullback-Leibler information divergence is nonnegative
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Proof of the Monotonic Property of EM Algorithm

in view of the M-step definition we can write the inequality

M∑
m=1

1

|S|
∑
x∈S

q(m|x) log G
′
(x|m,φ

′

m) ≥
M∑

m=1

1

|S|
∑
x∈S

q(m|x) log G (x|m,φm)

which can be rewritten in the form:

M∑
m=1

1

|S|
∑
x∈S

q(m|x) log
G

′
(x|m,φ

′

m)

G (x|m,φm)
≥ 0

therefore the increment of the log-likelihood criterion is nonnegative:

L
′
− L ≥

M∑
m=1

f
′
(m) log

f
′
(m)

f (m)
+

M∑
m=1

1

|S|
∑
x∈S

q(m|x) log
G

′
(x|m,φ

′

m)

G (x|m,φm)
≥ 0

Remark. The proof is important for any new application of EM algorithm.
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Structural Optimization Criterion

”structural”EM algorithm: explicit solution of the equation

G
′
(.|m,φ

′

m) = arg max
G(.|m,φm)

{∑
x∈S

q(m|x)

|S|
log G (x|m,φm)

}
, m ∈M

making substitution for G (x|m,φm) we obtain:

∑
x∈S

q(m|x)

|S|
log

∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

=
∑
n∈N

φmn

∑
x∈S

q(m|x)

|S|
log

[
fn(xn|m)

fn(xn|0)

]
⇒ the parameters f

′

n (.|m) and φ
′

m can be optimized separately

⇒ for any fixed structural parameters φmn we can write:

f
′

n (.|m) = arg max
fn(.|m)

{∑
x∈S

q(m|x)

|S|
log fn(xn|m)

}
and given the new parameters of densities f

′

n (xn|m) we can write:

φ
′

m = arg max
φm

{
φmnγ

′

mn

}
; γ

′

mn =
∑
x∈S

q(m|x)

|S|
log
[ f

′

n (xn|m)

fn(xn|0)

]
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Structural Optimization - Gaussian Mixture Model

Gaussian univariate densities: multivariate discrete mixture

fn(xn|m) =
1√

2πσmn

exp{− (xn − µmn)2

2σ2
mn

}, n ∈ N , m = 0, 1, 2, . . . ,M

EM iteration equations: (m ∈M, n ∈ N , x ∈ S)

q(m|x) =
G (x|m,φm)f (m)∑
j∈M G (x|j ,φj)f (j)

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

µ
′

mn =
1

w ′
m|S|

∑
x∈S

xnq(m|x), (σ
′

mn)2 =
1

w ′
m|S|

∑
x∈S

(xn − µ
′

mn)2q(m|x)

structural optimization: φ
′

mn = 1 for the s highest values γ
′

mn

γ
′

mn =
w

′

m

2

[
(µ

′(m)
n − µ(0)

n )2 + (σ
′(m)
n )2

(σ
(0)
n )2

− 1− 2 log
σ

′(m)
n

σ
(0)
n

]
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C-0002-1: pleomorphic calcif., segmentally distributed

log-likelihood image modified log-likelihood image
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C-0016-1: segmentally distributed calcification
log-likelihood image modified log-likelihood image
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C-0188-1: malignant mass, oval margins

log-likelihood image modified log-likelihood image
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B-3056-1: mass, focal-asymmetric density, margins n/a
log-likelihood image modified log-likelihood image
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C-0001-1: : mass, irregular shape, spiculated margins
log-likelihood image modified log-likelihood image
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C-0143-1: mass, irregular shape, ill-defined margins

log-likelihood image modified log-likelihood image
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B-3020-1: mass, lobulated shape, ill defined margins

log-likelihood image modified log-likelihood image
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C-0206-1: malignant mass, lobulated margins

log-likelihood image modified log-likelihood image
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D-4163-1: punctate calcification, clustered distribution

log-likelihood image modified log-likelihood image
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Concluding Remarks

Log-Likelihood Image of Screening Mammogram:

purely statistical construct without any medical context

aim: to facilitate diagnostic evaluation

masses: emphasized as dark regions with contour lines

micro-calcifications: dark spots of the size and form of window

topological continuity: image disintegrates for complex densities

APPLICATION in Monitoring Systems

evaluation of multivariate time series by sliding window

detection of unusual, suspect or unsafe states

sequential optimization of mixture parameters (non-supervised training)

clear statistical interpretation of the output

invariant with respect to arbitrary linear transform of data Proof
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Invariance with Respect to Grey-Level Transform

Invariance Property:

the statistical model is invariant with respect to arbitrary linear transform of
variables

the transformed data and transformed mixture parameters

yn = axn + b, µ̃mn = aµmn + b, σ̃mn = aσmn, y = T (x), x ∈ S

can be shown to satisfy the EM iteration equations

F (y|µ̃m, σ̃m) =
1

aN
F (x|µm,σm), P̃(y) =

1

aN
P(x)

q(m|y) = q(m|x), x ∈ S, w̃m = wm, m ∈M

and therefore the corresponding log-likelihood values differ only by a constant

log P̃(y) = −N log a + log P(x), x ∈ S

which can be removed by norming the output log-likelihood values Back
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Structural Optimization - Multivariate Discrete Mixtures

univariate discrete distributions: fn(xn|m), n ∈ N , m = 0, 1, . . . ,M

EM iteration equations: (m ∈M, n ∈ N , x ∈ S)

q(m|x) =
G (x|m,φm)f (m)∑
j∈M G (x|j ,φj)f (j)

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

f
′

n (ξ|m) =
1∑

x∈S q(m|x)

∑
x∈S

δ(ξ, xn)q(m|x)

structural optimization: φ
′

mn = 1 for the s highest values γ
′

mn

γ
′

mn =
∑
x∈S

q(m|x)

|S|
log
[ f

′

n (xn|m)

fn(xn|0)

]
= f

′
(m)

∑
xn∈Xn

f
′

n (xn|m) log
f

′

n (xn|m)

fn(xn|0)

γ
′

mn ≈ Kullback-Leibler information divergence Back
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