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Statistical Background of Mammographic Screening

Statistical Data of Breast Cancer:

breast cancer happens to about 8% of women during their lifetime

occurrence of malignant findings: about 1 to 3 in 1000 mammograms

5 to 10% of findings is proposed for surgical verification by biopsy

about 60 to 80% of biopsies result in benign diagnoses
(⇒ unnecessary physical trauma and emotional stress)

retrospective examinations report about 10 to 20% false negative
results of screening mammogram evaluation

Meaning of Mammographic Screening:

even hardly palpable breast tumors can make metastases

early detection of malignant lesions by mammographic screening is
the only effective tool to decrease the breast cancer mortality rates

⇒ millions of screening mammograms evaluated worldwide in one year

⇒ strong motivation for computer-aided evaluation
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Local Evaluation of Screening Mammograms

Idea of the log-likelihood image: LITERATURE

to emphasize mammographic lesions as “untypical” locations of high
“novelty” and facilitate diagnostic evaluation of screening mammograms

local properties: square search window with cut-off corners
x = (x1, x2, . . . , xN) ∈ X , xn ≈ grey-levels of the window inside

local statistical model: multivariate probability density P(x)
log P(x) ≈ measure of typicality of the window inside x

METHOD: approximation of the density P(x) by Gaussian mixture

data set: by scanning the mammogram with the search window

EM algorithm: to estimate the Gaussian mixture P(x)

log-likelihood image: log P(x) displayed as grey-levels at window center

interpretation: dark grey-levels indicate “suspect” locations
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Estimation of Local Statistical Model

Gaussian mixture of product components:
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log-likelihood function: (data set S by scanning the image)
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Computational Experiments

local statistical model: estimated from a single mammogram

⇒ each mammogram is evaluated individually

⇒ the method need not be trained by other images

⇒ it is not confronted with high natural variability of mammograms

mirror transform is applied to right-hand-part of images
to utilize the underlying symmetry

source images: four-view digitalized mammograms: two medio-lateral
and two cranio-caudal images

source database: South Florida University
http://marathon.csee.usf.edu/Mammography/Database.html

search window: square window of 13 x 13 pixels with cut-off corners,
dimension of x is N = 145 (= 169 – 4× 6)

data set: by scanning the four-view mammogram
with the search window (|S| ≈ 105 − 106)
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C-0002-1: pleomorphic calcif., segmentally distributed

original image log-likelihood image
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C-0016-1: segmentally distributed calcification
original image log-likelihood image
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B-3017-1: Mass, lobulated-architectural distortion

original image log-likelihood image
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D-4163-1: punctate calcification, clustered distribution

original image log-likelihood image
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B-3056-1: mass, focal-asymmetric density, margins n/a
original image log-likelihood image
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C-0001-1: mass, irregular shape, spiculated margins
original image log-likelihood image
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C-0143-1: mass, irregular shape, ill-defined margins

original image log-likelihood image
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B-3020-1: mass, lobulated shape, ill defined margins

original image log-likelihood image
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Weighted Modification of Local Statistical Model

GOAL: to suppress benign findings and increase sensitivity

γ(x) ≈ weighting function

γ(x) ≈ 1

N

N∑
n=1

xn,
∑
x∈S

γ(x) = 1,

weighted log-likelihood function:

L =
∑
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γ(x) log
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]

modified EM algorithm ⇒ weighted log-likelihood image
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B-3020-1: mass, lobulated shape, ill defined margins

log-likelihood image weighted log-likelihood image

Remark: Weighted modification (right) contains finer details and provides
additional contour-lines in the light regions
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C-0002-1: pleomorphic calcif., segmentally distributed

log-likelihood image weighted log-likelihood image
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C-0016-1: segmentally distributed calcification
log-likelihood image weighted log-likelihood image
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B-3017-1: Mass, lobulated-architectural distortion

log-likelihood image weighted log-likelihood image
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D-4163-1: punctate calcification, clustered distribution

log-likelihood image weighted log-likelihood image
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B-3056-1: mass, focal-asymmetric density, margins n/a
log-likelihood image weighted log-likelihood image
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C-0001-1: : mass, irregular shape, spiculated margins
log-likelihood image weighted log-likelihood image
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C-0143-1: mass, irregular shape, ill-defined margins

log-likelihood image weighted log-likelihood image
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Concluding Remarks

Log-Likelihood Image of Screening Mammogram:

purely statistical construct without any medical context

aim: to facilitate diagnostic evaluation

masses: emphasized as dark regions with contour lines More

micro-calcifications: dark spots of the size and form of window More

useful for evaluation of contra-lateral findings and multi-focal lesions

GENERAL METHOD: Evaluation of Images by Local Statistical Models

can be used to identify abnormal (suspect) locations

need not be trained by other images (non-supervised method)

the result of evaluation has a clear statistical interpretation

log-likelihood image is invariant with respect to arbitrary
linear transforms of the grey scale Proof

application: fault detection, novelty detection, image forgery detection
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Invariance with Respect to Grey-Level Transform

Invariance Property:

log-likelihood image is invariant with respect to arbitrary linear transform of
the grey scale of the original image

the transformed data and transformed mixture parameters

yn = axn + b, µ̃mn = aµmn + b, σ̃mn = aσmn, y = T (x), x ∈ S

can be shown to satisfy the EM iteration equations

F (y|µ̃m, σ̃m) =
1

aN
F (x|µm,σm), P̃(y) =

1

aN
P(x)

q(m|y) = q(m|x), x ∈ S, w̃m = wm, m ∈M

and therefore the corresponding log-likelihood values differ only by a constant

log P̃(y) = −N log a + log P(x), x ∈ S

which is removed by fixing the displayed grey-level interval Back
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Identification of “Masses” by Contour-Lines

case B-3017-1: mass, lobulated-architectural distortion

Remark: The masses may be quite subtle, may have smooth boundaries and
different shapes. Detection and classification of masses is more difficult than
detection of micro-calcifications.
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Identification of “Masses” by Contour-Lines

contour lines around “masses” and at the mammogram boundaries

Remark: Log-likelihood values log P(x) are typically dominated by a single
component of the mixture. The “switching” of components at the boundaries
of different areas is accompanied by decreased log-likelihood values
which are visible as contour lines.
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Identification of “Masses” by Contour-Lines

contour lines displayed by the inverse log-likelihood image

Remark: The contour lines are well visible at the mammogram boundaries
characterized by continuously decreasing grey levels. The contour lines may
help to evaluate possible contralateral findings or multifocal lesions. Back
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Identification of “Micro-Calcifications” by Spots

original micro-calcifications corresponding dark spots

Remark: Each position of the window containing a light pixel implies a lower
value of log P(x). ⇒ A light pixel is identified as a dark spot of
window-size. Back
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