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Statistical Background of Mammographic Screening

Statistical Data of Breast Cancer:

@ breast cancer happens to about 8% of women during their lifetime
@ occurrence of malignant findings: about 1 to 3 in 1000 mammograms
@ 5 to 10% of findings is proposed for surgical verification by biopsy

@ about 60 to 80% of biopsies result in benign diagnoses
(= unnecessary physical trauma and emotional stress)

@ retrospective examinations report about 10 to 20% false negative
results of screening mammogram evaluation

Meaning of Mammographic Screening:

@ even hardly palpable breast tumors can make metastases

o early detection of malignant lesions by mammographic screening is
the only effective tool to decrease the breast cancer mortality rates

@ = millions of screening mammograms evaluated worldwide in one year

@ = strong motivation for computer-aided evaluation y




Local Evaluation Statistical Model Computational Experiment Examples

Local Evaluation of Screening Mammograms

Idea of the log-likelihood image: > LITERATURE

to emphasize mammographic lesions as “untypical” locations of high
“novelty” and facilitate diagnostic evaluation of screening mammograms

local properties: square search window with cut-off corners
x=(x1,%,...,xn) €EX, x, & grey-levels of the window inside

local statistical model: multivariate probability density P(x)
log P(x) &~ measure of typicality of the window inside x

METHOD: approximation of the density P(x) by Gaussian mixture

o data set: by scanning the mammogram with the search window

o EM algorithm: to estimate the Gaussian mixture P(x)

o log-likelihood image: log P(x) displayed as grey-levels at window center

@ interpretation: dark grey-levels indicate “suspect” locations
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Local Evaluation Statistical Model Computational Experiment Examples

Estimation of Local Statistical Model

Gaussian mixture of product components:
M M N
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log-likelihood function: (data set S by scanning the image)
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EM algorithm: (initial parameters chosen randomly)
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Local Evaluation Statistical Model Computational Experiment Examples

Computational Experiments

]
]
]
]
o

local statistical model: estimated from a single mammogram

=> each mammogram is evaluated individually

= the method need not be trained by other images

= it is not confronted with high natural variability of mammograms

mirror transform is applied to right-hand-part of images
to utilize the underlying symmetry

@ source images: four-view digitalized mammograms: two medio-lateral
and two cranio-caudal images

@ source database: South Florida University
http://marathon.csee.usf.edu/Mammography/Database.html

o search window: square window of 13 x 13 pixels with cut-off corners,
dimension of x is N = 145 (= 169 — 4 x 6)

@ data set: by scanning the four-view mammogram
with the search window (|S| ~ 10° — 10°)
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Local Evaluation Statistical Model Computational Experiment Examples

C-0002-1: pleomorphic calcif., segmentally distributed

original image log-likelihood image
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original image
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> Local Evaluation Weig ode Statistical Model Computational Experiment Examples

B- 3017 1: Mass, Iobulated architectural distortion

original image
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Screening Local Evaluation Weighted Model Conclusion Statistical Model Computational Experiment Examples

D-4163-1: punctate calcification, clustered distribution

original image log-likelihood image

A * o

(oTiA]



Local Evaluation Statistical Model Computational Experiment Examples

B-3056-1: mass, focal-asymmetric density, margins n/a

original image log-likelihood image

(oTiA]



Local Evaluation Statistical Model Computational Experiment Examples

C-0001-1: mass, irregular shape, spiculated margins

original image log-likelihood image

(oTiA]




Local Evaluation Statistical Model Computational Experiment Examples

C-0143-1: mass, irregular shape, ill-defined margins

original image log-likelihood image
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Local Evaluation Statistical Model Computational Experiment Examples

B-3020-1: mass, lobulated shape, ill defined margins

original image Iog—llkellhood |mage
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Weighted Model Weighted EM Examples

Weighted Modification of Local Statistical Model

GOAL: to suppress benign findings and increase sensitivity

~v(x) ~ weighting function
SEPIAD E
x€eS
weighted log-likelihood function:

L= Z v(x) log Z Win F(X| 1y, Om)

xeS meM

modified EM algorithm = weighted log-likelihood image

Win F (X[ ey O m)
a(mpx) = el = > (x)a(mlx)

D jem Wi F(x|p;, 04) cs

’ 1 ’
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Weighted Model Weighted EM  Examples

B-3020-1: mass, lobulated shape, ill defined margins

log-likelihood image weighted log-likelihood image

\ T4

Remark: Weighted modification (right) contains finer details and provides
additional contour-lines in the light regions
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Weighted Model Weighted EM  Examples

C-0002-1: pleomorphic calcif., segmentally distributed

log-likelihood image weighted log-likelihood image
N e 4 b
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Weighted Model Weighted EM  Examples

C-0016-1: segmentally distributed calcification

log-likelihood image weighted log-likeliho

od image
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Weighted Model Weighted EM  Examples

B-3017-1: Mass, lobulated-architectural distortion

log-likelihood image weighted log-likelihood image
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ocal Evaluation Weighted Model C. on Weighted EM  Examples

: mass, focal-asymmetric density, margins n/a
weighted log-likelihood image
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Weighted Model Weighted EM  Examples

C-0001-1: : mass, irregular shape, spiculated margins
log-likelihood image weighted log-likelihood image
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Weighted Model Weighted EM  Examples

C-0143-1: mass, irregular shape, ill-defined margins




Conclusion
Concluding Remarks

Log-Likelihood Image of Screening Mammogram:

o purely statistical construct without any medical context
aim: to facilitate diagnostic evaluation

masses: emphasized as dark regions with contour lines
micro-calcifications: dark spots of the size and form of window

useful for evaluation of contra-lateral findings and multi-focal lesions

GENERAL METHOD: Evaluation of Images by Local Statistical Models

can be used to identify abnormal (suspect) locations

need not be trained by other images (non-supervised method)

the result of evaluation has a clear statistical interpretation

®© 6 o6 o

log-likelihood image is invariant with respect to arbitrary
linear transforms of the grey scale

(]

application: fault detection, novelty detection, image forgery detection
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Conclusion
Invariance with Respect to Grey-Level Transform

Invariance Property:

log-likelihood image is invariant with respect to arbitrary linear transform of
the grey scale of the original image

the transformed data and transformed mixture parameters
Yn=ax,+ b, f[imn = apmn+ b, Gmn=aomn, y=T(x), x€S
can be shown to satisfy the EM iteration equations
F Wit ) = g F(<lttm o). Py) = 2 POY)
q(mly) = q(m|x), x€S, Wp=w, meM
and therefore the corresponding log-likelihood values differ only by a constant
log Is(y) = —Nloga+logP(x), x€S§

which is removed by fixing the displayed grey-level interval
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1 Model Conclusion

Identification of “Masses” by Contour-Lines

case B-3017-1: mass, lobulated-architectural distortion

Remark: The masses may be quite subtle, may have smooth boundaries and
different shapes. Detection and classification of masses is more difficult than__,
detection of micro-calcifications. (OTiA]



Identification of “Masses” by Contour-Lines

contour lines around “masses” and at the mammogram boundaries

< R
\ . S .
A

Remark: Log-likelihood values log P(x) are typically dominated by a single

component of the mixture. The “switching” of components at the boundaries

of different areas is accompanied by decreased log-likelihood values ——e
UTiA

which are visible as contour lines. [omia)



Conclusion

Identification of “Masses” by Contour-Lines

contour lines displayed by the inverse log-likelihood image

Remark: The contour lines are well visible at the mammogram boundaries
characterized by continuously decreasing grey levels. The contour lines may
help to evaluate possible contralateral findings or multifocal lesions.
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i Model Conclusion

original micro-calcifications corresponding dark spots

Remark: Each position of the window containing a light pixel implies a lower
value of log P(x). = A light pixel is identified as a dark spot of
window-size.
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