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Method of Mixtures Principle Example smési

Method of Distribution Mixtures

Information Source:

training data S: independent observations of a random vector identically
distributed (i.i.d.) according to an unknown probability distribution P*(x)

S ={xW x@  x( x(F) = (xl(k) xz(k) ...,x,(vk)) ex

) )

Principle of the Method of Mixtures:

approximation of unknown multidimensional multimodal distribution P*(x)
by means of a linear combination of component distributions F(x|m)

PR = 3 wnF(xim), 3 wim=1, 3 F(x|m) =1 <:/XF(xm)dx)

meM meM xeX

Application examples:

pattern recognition, image analysis, prediction problems, texture modeling,
statistical models, classification of text documents, ...

(wriA]



Method of Mixtures Principle Examp!

Mixtures as a “Semiparametric” Model

parametric approach: e.g. assuming multivariate normal density

1
P(x) = W exp{— (x —¢)TA (x—¢)}, xex
mean: ¢ = S Z X, covariance matrix: A = é Z(x —c)(x—¢c)"

PES XES

nonparametric approach: general kernel estimate

1 (Xn _yn)2
P(x) |S| Z Hmanexp{ 202 },XEX

YES neEN

problem: (choice of the smoothing parameters o)

Mixtures as a Compromise: Semiparametric Multimodal Model

@ not so limiting as parametric models

@ almost as general as nonparametric model, without smoothing

o efficient estimation of parameters by EM algorithm

I 1A




Method of Mixtures Principle Example smési

Example - EM algorithm for mixtures of Gaussian densities

computation of parameter estimates from data: S = {x(), ... x(K)}
1 1
F(x|Cm, Am) = ————exp{—=(Xx —Cm) A7 (x — Cm)}, x € RN
(xlem, Am) @r)V det Ay, p{ 2( m) Am ( m)}
S ZlogP S Zlog lz (x|em, A )Wml
| | xeS | | xeS meM

Iteration equations: =~ to maximize log-likelihood function

Wi F(X|Cmy Am)

M
Zj:l w;F(x[c;, Ay)

E-step: g(m|x) = , xS, m=12 ... M

M- =
Step: Wm S );gq(m|x), c,, Z . m|x %x q(m|x)
’ 1 7 ’
Am = (o) Z q(mlx) (X - Cm)(x - Cm)T

> ves a(mix) 2=

Remark: The number of components has to be given. oTiA



Example smé&si

Principle

Method of Mixtures

ixture from data
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dimension of data: N = 2, number of mixture components: M =7



Method of Mixtures ple Example smési

Random sampling from a Gaussian mixture (M=7)

L L L I
a 50 100 150

6000 data points (test of the correct implementation of EM algorithm) [0TiA
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(M=28)

Principle

Method of Mixtures
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EM generally General EM Monotonie Computational properties Historie

General Version of EM Algorithm

EM algorithm: to maximize log-likelihood function

L= (57 3 oe P |S|Z'°glz ()]

xeS x€eS meM

Iteration Equations: (m=1,2,....M, x€8, S= {x(l)7 o xUOY

Wi F (x| m)
E-step: q(mix) = —r————> W, Z (m|x)
Zj:l w; F(x|j) |8| x€S
1

M-Step: F (|m)=arg r?lan>1<) {m );S q(m|x) log F(x\m)}

for product components: F(x|m) =[], .y fa(xalm), N ={1,2,... N}

1
= ( |m) = arg n(wz‘a;j) {szesq(mp());sq(mh) log f,,(x,,|m)}7 neN

Remark: Only inequality is sufficient in the M-Step
instead of maximum = generalized EM (GEM) algorithm. [OTia)



EM generally General EM Monotonie Computational properties Historie

Explicit Solution of the M-Step (Grim,1982)

Let F(x|b), x € X be a probability density function and
let b* be the maximum-likelihood estimate of the parameter b:

b* = arg m;lx{L(b)} = arg max {é Z log F(x|b)}
x€S

Further let b* be an additive function of the data vectors x € S:

Denoting v(x) = N(x)/|S| the relative frequency of x in S we can write:

L(b) =Y y(x)logF(x|b), X ={xeX:q9(x)>0}, (D ~(x)=1)

x€X xeX

b* = Z v(x) a(x) = arg ml?x{ Z v(x) log F(x|b)}

xEX xeX

Consequence: Weighted likelihood function is maximized by the
weighted analogy of the related m.-l. estimate. oTiA



EM generally General EM Monotonie Computational properties Historie

Monotonic Property of EM Algorithm (Schlesinger, 1968)

The sequence of log-likelihood values {L(1)}2°/ is non-decreasing:

LD >0 t=0,1,2,...

and, if bounded above, converges to a local or global maximum
(or a saddle-point) of the log-likelihood function:

lim L® =[* < 0.
t—o0

The existence of a finite limit L* < oo implies the related necessary

conditions:
lim (L&Y —1D)y=0 =
t—o0
= lim |wED(m)—wO(m)|=0,me M, lim [|gEV(|x)—q(|x)|| =0
t—o0 t—00

Remark: The convergence of the sequence {L(9}°, does not imply
the convergence of the corresponding parameter estimates!
12}



EM generally General EM Monotonie Computational properties

Proof of the Monotonic Property of EM Algorithm

Kullback-Leibler information divergence 1(q(-|x)||q (:|x)) is non-negative for
any two distributions q(-|x), q (-|x) and it is zero if and only if the two
distributions are identical.

= MZ a(0)llq (- Z[Z (mlx) log ((";";))]zo

x€eS XES meM

Substitution for g(m|x), q'(m|x) from the E-Step implies the inequality:
WinF (x|m)
q(m|x) Iog q(m|x) log >0
915 3, e py e X 3 o

where the first term is equal to the increment of the criterion L:

(x _ L
|Z;§m§4 q(m|x) Iog'D |S|Z L — L.
(OTiA]




EM generally General EM Monotonie Computational properties Historie

Proof of the Monotonic Property of EM Algorithm

Making substitution from the last equation we obtain:

(*) L'—L> Z [ Z m|x]|og+z Z (m|x) log F(( || ))

meM XES meM XES

and by using substitution from the M-Step

**  w, |S\Z g(m|x), m=12....M
x€S
we can write the inequality:

) Z[ Sq mlx}log = > wylog 2 >0

meM XES meM

Consequently, the first sum on the right-hand side of the inequality (*) is
non-negative.

Remark: The definition (**) of the weights w,, maximizes
the first sum in Eq. (¥**).

(oTiA]



EM generally General EM Monotonie Computational properties Historie

Proof of the Monotonic Property of EM Algorithm

In view of the M-Step definition, the function F'(-|m) maximizes

the left-hand side, i.e. we can write:

Z Z (m|x) log F’ (x|m) Z Z (m|x) log F(x|m).

mGM XGS mGM XGS

The last inequality can be rewritten in the form

(x|m)
Z Zm\xlogl__(|)2

mEM XES

i.e. the increment of the Iog—llkellhood function L is non-negative:

L —L> Z W Iog—+ Z Z (m|x) log F((X|m)) >

meM mEM XES

= L >

Remark: Any statistical interpretation of the proof is unnecessary! [UTiA



EM generally General EM  Monotonie Computational properties Historie

Mixture Identification x Approximating by Mixtures

Problem of mixture identification (e.g. cluster analysis)

o GOAL: to identify the true number of components and to
estimate the true mixture parameters

@ the estimated mixture must be identifiable

o PROBLEM: the log-likelihood function has local maxima nearly always
(especially in case of small data sets in high dimensional spaces)

@ = the resulting local maximum is starting-point dependent

o PROBLEM: the mixture estimate is strongly influenced by the chosen
number of components and by the initial parameters

Problem of approximating unknown probability distributions

o GOAL: precise approximation of the unknown probability
distribution by using mixture distributions

@ the approximating mixture need not be identifiable
@ the exact number of components is irrelevant

o the approximating mixture can be initialized randomly Ij



EM generally General EM  Monotonie Computational properties Historie

Computational properties of EM Algorithm

real-life approximation problems =

large data sets + large number of components:

@ in case of large mixtures (M = 10! — 10?) the low-weight components
may be neglected (= the exact number of components is irrelevant)

@ the existence of local log-likelihood maxima of large mixtures is less
relevant because the related maximum values are comparable

@ = the influence of initial parameters is less relevant, the mixtures can be
initialized randomly

o the EM iterations can be stopped e.g. by a relative increment threshold
because of limited influence on the achieved log-likelihood value

@ a reasonable stopping rule may decrease the risk of overfitting (excessive
adaptation to training data)

o the EM algorithm is applicable to weighted data

Remark: The computational properties are data-dependent and
therefore not generally valid.

(oTiA]



EM generally General EM Monotonie Computational properties Historie

From the History of the Mixture Estimation Problem

Computation of m.-I. estimates of mixture parameters by setting partial
derivatives to zero cannot be solved analytically. SOLUTION?

o First paper: Pearson (1894): “Contributions to the mathematical
theory of evolution. 1. Dissection of frequency curves.”
Philosophical Trans. of the Royal Society of London 185, 71-110.
Subject: mixture of two univariate Gaussian densities estimated by the
method of moments. (about 80 papers in the years 1895-1965)

efficient estimation of mixtures was enabled only by computers:
o Hasselblad (1966), Day (1969), Wolfe (1970): derived
simple iteration scheme by algebraic rearrangement of the likelihood
equations (at present known as EM algorithm) which was converging
and easily applicable to large mixtures in multidimensional spaces
o Hosmer (1973): ‘“lterative m.-l. estimates were proposed by Hasselblad
and subsequently have been looked at by Day, Hosmer and Wolfe.”

o Peters a Walker (1978): "“... we have observed in experiments that
the convergence is monotone, i.e. that the likelihood function is actually
increased in each iteration, but we have been unable to prove it.” @



EM generally General EM Monotonie Computational properties Historie

From the History of the Mixture Estimation Problem

the first proof of the monotonic property of EM algorithm:

@ Schlesinger M.I. (1968): “Relation between learning and self learning
in pattern recognition”, Kibernetika, (Kiev), No. 2, 81-88.

AULIALACILR 1UIAG, DUIAG Duanamim 4] LpUbpies n
HaJIbHbL BEJIMUAHAM Q. ® (1),
JleMMa JIerko MoKerT ObITb AOKasaHa Ausi s = 2, < 2 N o (%) log p (vi/ai™"); (10)
a 3aTeM MeTOJOM MaTeMaTHUecKO HHAYKUuH 0606- k=1 i=1
uleHa Ans JoGoro s. (o /ﬂ“))
Teopema 1. Mycts A, A*) _ snauenns ne- Ezaik(/l(”) log — A —LF— >
H3BECTHBIX NapaMETPOB, MOJYHEHHDIX COOTBETCTEEH- ek Z 0-p v,/
HO mocae f-oii u (f + 1)-0ff mrTepauuit anropuT™a =,
camooGyueHns. B TakoMm ciyuae, eci A“’ + A, 3 .
(& (RN };“‘ plo,/af+h)
10 LAYy < LA™, <= > QA log E2R Ty
JloxasaTenbctBo. Ha ocHOBaHum TOro, 4TO : o+
s i=1 k=1 I’(H'7 p(v,/afi*th)
)_’u,,2 =1 ana Beex i (cMm. dopmyny (7)), seipa- u‘x

=1

wenne 15 L(A"Y) moxmo 3anucats criefyiourum
06pasom:

s
LAYy = 2 Iogz peplo/ap) =
=1 h=1

=¥ Yo, @A logp +

k=1 =1

npuuem, TO KpafiHeit Mepe, OJHO H3 NepBBIX ABYX
HEPABEHCTB BBHIMOJIHSIETCS] CTPOrO.

JlokaxeM HepaseHcTBO (9).

Tlo onpenenenuio (31an 2 anrupp};ma) BeJIMYHHA

S )
p{+Y mporopunonanbHa BejmuuKe Yoo, (AY). K

=1

s
N i
TOMY e OUeBHIHBIM AB/IsIeTCS PaBEHCTBO 2‘ pg+l =

o Ajvazjan et al. (1974, in Russian): cite Schlesinger (1968)
o Isaenko & Urbach (1976, in Russian): cite Schlesinger (1968)

(oTiA]



EM generally General EM Monotonie Computational properties Historie

From the History of the Mixture Estimation Problem

the standard reference to EM algorithm:

o Dempster et al. (1977): “Maximum likelihood from incomplete data
via the EM algorithm.” J. Roy. Statist. Soc., B, Vol. 39, pp.l-38.

Maximum Likelihood from Incomplete Data via the EM Algorithm

By A. P. DEMPSTER, N. M. LAIrRD and D. B. RuBIN
Harvard University and Educational Testing Service

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH
SecTioN on Wednesday, December 8th, 1976, Professor S. D. SiLVEY in the Chair]

o Dempster et al. introduced the name EM algorithm and described its
wide application possibilities (main subject: problem of incomplete data)

o Google Scholar (2017): 48 500 citations of the above paper
(“all time top 10” in statistics)

@ : the term “EM algorithm” used in 340 000 papers
@ : the terms “EM algorithm & mixture” used in 103 000 papers

(oTiA]



EM generally General EM  Monot ompu al prop. rie

From the History of the Mixture Estimation Problem

erroneous proof of the convergence of parameter estimates:
(does not concern the monotonic property of EM algorithm)

o Boyles R.A. (1983): “On the convergence of the EM algorithm.” J.
Roy. Statist. Soc., B, Vol. 45, pp. 47-50.

@ Wu C.F.J. (1983): “On the convergence properties of the EM
algorithm.” Ann. Statist., Vol. 11, pp. 95-103.

UICUICULGE PlUPOILIGe Ul WY Gug)

applications in statistics.

[ ™ U

However, the proof of gence of EM seq in DLR ins an error. The
mpbcaunn from (3.13) to (3.14) in their Theorem 2 fails due to an incorrect use of the
inequality, Additional ts on this proof are given in Section 2.2. Therefore

the convergence of EM sequence as proved in their Theorems 2 and 3 is cast in doubt.
Other results on the monotonicity of likelihood sequence and the convergence rate of EM
sequence (Theorems 1 and 4 of DLR) remain valid.

Desbite its slow numerical convergence. the EM algorithm has become a very popular

Monographs on Mixtures:

o Titterington et al. (1985): Statistical analysis of finite mixture
distributions, John Wiley & Sons: Chichester, New York.

@ McLachlan and Peel (2000): Finite Mixture Models, John Wiley & .
Sons, New York, Toronto. UTIA



Product mixtures Product mixtures Implementation

PRODUCT MIXTURES

mixtures of product components (conditional independence model):

P(x)= Y wm [] falxalm), x€X

Examples: meM  neN
Gaussian mixtures with diagonal covariance matrices (real variables)
mixtures of multivariate Bernoulli distributions (binary variables)
ADVANTAGES:

o do not imply the assumption of independence of variables
= do not imply the “naive Bayes” assumption
the mixture parameters can be efficiently estimated by EM algorithm
any discrete distribution can be expressed as product mixture

®© 6 o o

Gaussian product mixtures approach the asymptotic accuracy of
non-parametric Parzen estimates for M >> 1

no risk of ill-conditioned covariance matrices in Gaussian components
marginal distributions: by omitting superfluous terms in the products

any conditional distributions easily computed

product mixtures support the subspace (structural) modification @

®© 6 6 o



Product mixtures Product mixtures Implementation

EM Estimation of Gaussian Product Mixtures

COMPONENTS: Gaussian densities with diagonal covariance matrices

Xn — mn2
op{ - rgml}, e
mn

|S| Z log P(x |S| Z log| Z Win F (X| 1y, O m)]

x€eS meM

1
F(x|tm, om) = H @70
mn

EM iteration equations: (m € M, n e N)

Wi F (x|, O m

i , x €S,
Zj 1 WjF(X|Nj»0'j)
/ 1
Wm |S| Z q(m|x Hmn = m Zx,,q(m|x)
xeS m xeS
G = | 52 Z X = fimn)” | 52 Zx a(mlx) = (i)’

no matrix inversion = no risk of ill-conditioned matrices @



Product mixtures Product mixtures Implementation

EM Estimation of Discrete Product Mixtures

COMPONENTS: products of univariate discrete distributions

F(x|m) = [] faxalm), x=(x,...,xn) € X, X, € X, |Xy| < 00

neN
1 1
L= ?ZlogP(x) = ?Zlog Z Wi H fa(xalm)|, x€X
| |x€8 | ‘XES meM neN

EM iteration equations: (x € S, S = {x(M ... x(K)})

i = 17 22 9l

xeS

Wi F(x|m)

q(m|x) = m,

’

felm) = s 3 d(€ sm)a(mlx)
e x€S

Remark 1 Discrete product mixture is not identifiable.
(= problem in cluster analysis x advantage in approximation)

Remark 2 Any discrete distribution is as a product mixture. @



Product mixtures Product mixtures Implementation

EM Estimation of Multivariate Bernoulli Mixtures

COMPONENTS: products of univariate Bernoulli distributions
binary data: numerals on a binary raster, results of biochemical tests ...
x = (x1,x0,...,xn) € X, x,€{0,1}, X ={0,1}N

F(x|m) = F(x|0m) = [] f0nl0mn) = J] 050(1 = Omn)

neN neN

=15 Zlog[z WmF(x|60,,) S={xM . x(Kn

xeS meM

EM iteration equations:
wmF(x|6,)
q(mlx) = —r————
=1 wiF(x]6;)

W |S|Z q(m|x), 00 |S|anq m|x)

x€eS

xe$S m=12....M

Remark: Product of a large number of parameters ,,, may underflow. Ij



Product mixtures Product mixtures Implementation

Implementation Comments on EM Algorithm

@ implementation of EM algorithm as a data cycle (for |S| >> 1)

Y oa(mlx) = W, > X a(m]x) =ty O
xeS xeS
@ basic condition to verify the correct implementation: L > L

@ relative increment threshold € to stop iterations:
(L —L)/L<e, (ex~1073-1079)
@ ¢ is useful to avoid “overpeaking” in final stages of convergence

@ EM algorithm suppresses the weights of “superfluous” components
(large number of low-weight components = to many components M)

@ global information about overlapping components:
_ 1
qmax(x) = rrr;neaj\)fl{q(m|x)}’ Amax = Exezsqmax(x)

@ in multi-dimensional spaces (N >> 1) the criterion Gmax is
usually high (= 0.85 +0.99) = the overlap of components is small

Remark: Correct implementation of EM algorithm can be reliably verified
by re-identification of mixture parameters from large artificial data. oTiA



Product mixtures Product mixtures Implementation

Implementation of EM Algorithm in High Dimensions

PROBLEM: numerical instability of the E-step

@ the components F(x|m) may “underflow” at dimensions N ~ 30 — 40
@ = the “lost” values cannot be “recovered” by norming in Eq. for g(m|x)
@ = inaccurate evaluation of the conditional weights gq(m|x)

SOLUTION:
log[F(x|m)wp,] = log w,, + Z log f,(xn|m)
neN
maximum component: log C(x) = maxm,{ log[F(x|m)wp] }

NORMING of F(x|m) a P(x) for evaluation of g(m|x):

exp{— log C(x) + log wy, + Z log f,(xa|m)} = C(x) " F(x|m)w,,
neN
a(mix) = C(x)7rF(x|m)wp, __ Fx|m)wm
DL COOT (x5 F(xliwg

Examples of C-pseudocode: I-—M'




Modification Structural Model Incomplete Data Weighted Data Sequential Scheme

Structural Mixture Model (Grim et al. 1986, 1999, 2002)

binary structural parameters: ¢,, = (ém1,- - -, dmn) € {0, 1}V

F(x|m) = H fn(anm)(bmnfn(Xn‘O)l_¢m"a
neN
fa(xn|0) : fixed “background” distributions, usually f,(x,|0) = P} (x,)
¢mn =0 = f(xp|m) is replaced by f,(x,|0)

P(x) = Z F(x|m)w,, = F(x|0) Z G(x|m, )W,
meM meM
Xp|m) 70
colman) = 11 [f,?n((x”"m)] P = [T ) >0

“the background distribution” F(x|0) reduces in the Bayes formula:

P(x) a Zje/\/l G(xlj, ¢ wj meM.,

plulx) = AIPW) _ Zomesa, CBIM Pl sy g,

MOTIVATION: Local, component-specific feature selection,
“dimensionless” computation, structural neural networks. UTiA



Modification Structural Model Incomplete Data Weighted Data Sequential Scheme

Structural Modification of EM Algorithm

structural optimization can be included into EM algorithm:

|S| Zlog[ Z F(x|0)G(x|m, ¢,, )Wm]

meM
EM iteration equations: (me M,ne N,x € S)

_ G(X|ma ¢m)Wm
q(m|x) - ZJEM G(X|_/, ¢)J)VVJ7 m IS‘ Z m|X

PES

g(m|x)
f,(|m) = arg T?nf){z s logf(xnlm)}

structural optimization:
émn = 1 for a fixed number R of largest values of the criterion 7.,,:

o = 5] 2 ) g [ et

Remark: The background distribution F(x|0) can be included into
optimization too (Grim, 1999). UTiA



Modification Structural Model Incomplete Data Weighted Data Sequential Scheme

Structural EM Algorithm - Discrete Mixture

f,,(x,,\m), x, € X,, n€ N = discrete probability distributions

Xp|Mm $mn
| Z'Og[ > GxIm pp)wm|,  G(x|m) =[] [f‘((XIO))]

meM neN

EM iteration equations: (me M,ne N ,x € S)

. G(X|m7(rbm)w’77
g(m|x) = ZJEM Al ¢j)Wj’ Wi |3| Z?S g(m|x)
m|x)
0(&, xn)
nElm) =3 56 x e

structural optimization: (;5;,,,, =1 for the R largest values fy;m,:

a(mx) | hCulm)] £ (4lm)
=2 i) {( )= 3 fa(Elmtos 2

x€S EnEX,

Remark: The last sum is the Kullback-Leibler information divergence. UTiA



Modification Structural Model Incomplete Data Weighted Data Sequential Scheme

Structural EM Algorithm - Gaussian Mixture

Gaussian densities: (X, |fmny Omn) = ﬁ exp{ _ ()(,7270%}
Zlog[ Z w, H <x,,um,,70,,m))¢m"}
m
|S‘ xeS meM neN’ ” XnI/J/OmUOn) ’

EM iteration equations: (me M,ne N,x € S)

_ G(X|m,¢m)Wm
"('""‘)‘ZJ-EMG(x|j,¢>j)Wf’ o 'S‘xze;s e

/

1 /

structural optimization: qS:m =1 for the R largest values 'ymn :

L (S N G L o ;o
o = + —lo —1| = w,I(f,(-|m), f,(-|0
= | o o 8 (o0n)? (s (m). £,(10)

Remark: 'y;,m is the Kullback-Leibler information divergence. UTiA



Modification Structural Model Incomplete Data Weighted Data Sequential Scheme

Properties of Structural Mixture Model

STRUCTURAL MIXTURES = statistically correct subspace approach:

o PRINCIPLE: the less informative univariate distributions f,(x,|m)
are replaced by fixed “background” distributions f,(x,|0)

o reduces the number of mixture parameter (and components)
= reduces the risk of overpeaking

@ suppresses the influence of unreliable (less informative) variables

o the EM algorithm performs feature selection for each component
independently (it is not necessary to exclude variables globally)

@ Bayesian decision-making based on structural mixtures is dimension
independent (Grim 2016)

@ the structural optimization implied by EM algorithm is controlled by the
Kullback-Leibler information divergence

@ avoids the biologically unnatural connection of probabilistic neurons with
all input variables (Grim et al. 2000)

@ enables the structural optimization of probabilistic neural networks by
EM algorithm (Grim 2007) [OTia)



Modification Structural Model Incomplete Data Weighted Data Sequential Scheme

Modification of EM Algorithm for Incomplete Data

INCOMPLETE DATA: x = (Xl, —, X3, X8y —y —y X7y 7X[\/) eX
N(x) = {n € N : variable x, is defined in x}, xe€ X
S,={xeS:neN(x)}, ~ vectors x €S with the defined variable x,

Assumption: components in product form =

|S| Zlog[z wnF(x|m)],  F(x|m) = H (x| m)

x€S meM neN (x)

EM iteration equations: (me M,ne N ,x € S)

Wmlf(x|m)
g(mlx) = — P2y g(mlx)
Sy wiF (xlj) 18] Zg

1
( |m) = arg ff??;() {m x%; q(m|x) log fn(Xn|m)}

Remark: The likelihood criterion depends on available values only. [OTiA



Modification Structural Model Incomplete Data Weighted Data Sequential Scheme

Modification of EM algorithm for Weighted Data

NOTATION' 7(x) >0 : relative frequency of x in S, (D ,cr7(x)=1)

-5 =S gl 3 wmF(xim)] = S A(x)logl 3w (xm)]

xeS meM xeX meM

X = {x € X :7(x) >0} : the sum can be confined to x € X:

“weighted” EM iteration equations: (mc M, nc N, x € X)

m|x :M F(x|m Xn|m
atmbe) = 2 Sy Fsim) = T Gl
i = 1g7 22 almbe) = 3 2 (x)a(mlx)
xeS xeX
F'(.|m) = arg max { Z L x)q mix) log F(x|m)}
xeX

Applications: relevance of data, aggregation of data,
discrete data weighted by table values: ~(x) = P*(x), x € X (TTiA



Modification Structural Model Incomplete Data d Data Sequential Scheme

Sequential Decision Scheme (Grim 1986, 2014)

INFORMATION CONTROLLED SEQUENTIAL DECISION-MAKING

Given the observations xp = (X;,...,x;) € Xp, D= {j1,...,ji} CN we
have to choose the next most informative variable x,, n ¢ D to maximize the
conditional information /,(X,,2) about the classes Q2 = {w;,...,wk}.

SOLUTION: explicit evaluation of the criterion /,,(X,, Q)

(XI‘HQ) XD(X ) - HXD(XH‘Q)v n* = arg m;g {IXD(X'”Q)}

P.p(x,, x
Heol ) = Y ~Puiolalx0) 108 Paolalxo), Prip(inlxo) = 22U x0)
Xn€EXy D(XD)
HXD(X"|Q) = Z w|xD Z PnIDw Xn|xDa )|Og Pn\Dw(Xn‘XD7w)7
weN Xn€Xn
Pripw(XnlXD,w) = Pnpjw(Xn, Xp|w)/Pplw(Xp|w) = Z Wi (xp,w)fa(xa|m),

meM,,

PnD|w(XnaXD|w) = Z Wmfn(Xn|m7w) H f;'(Xi|m7w)> —
meM iep (OTiA)



Modification Structural Model Incomplete Data Weighted Data Sequential Scheme

Feature Selection: the Most Informative Subspace

special case of the sequential decision scheme:
INFORMATION CRITERION for the optimal feature subset
ASSUMPTION: class-conditional product mixtures P(x|w),w € Q

(X5, 9) = H(Xo) — H(¥p|f2), D = arg max {/(¥p,2)}

'DD|w xD|w Z W H f(x,,|m xp € &Xp,

meM,, neD
H(Xp)= > —Pp(xp)logPp(xp), D ={j,....jkx} CN, [D|=k
XpEXp
H(Xp|Q) = > p(w) > —Ppu(xplw)log Ppp,(xplw)
weN XpEXp

optimal subset D C A: complete search, approximate methods

APPLICATION: informative feature selection for pattern recognition

(oTiA]
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PROPERTIES OF PRODUCT MIXTURES

SURVEY: computational properties of product mixtures
o efficient estimation of multivariate distribution mixtures (1)
@ suitable to approximate multi-modal, real-life probability distributions

@ with increasing number of components the Gaussian mixtures
approach the asymptotic accuracy of Parzen (kernel) estimates

@ unlike Parzen estimates the product mixtures are optimally
“smoothed” by the efficient EM algorithm

o directly available marginal probability distributions (!)
@ the mixture parameters can be estimated from incomplete data

@ product components enable the information controlled
sequential decision-making in multi-dimensional spaces

@ product mixtures can be interpreted as probabilistic neural networks
@ enable the structural optimization of probabilistic neural networks

@ provide information criterion for the optimal feature subset

(oTiA]



Surv Literature

Al: Asymptotic Properties of Parzen Estimates

Theorem (Parzen, 1962; Cacoullos, 1966)

Let Sk be a sequence of K independent observations of an N-dimensional
random vector distributed with the probability density function P*(x). The
non-parametric density estimate P(x) with the soothing parameter ok

* 3 I o { U}

yGSK neN

is asymptotically unbiased in each continuity point of P*(x), i.e. it holds
lim Es, {P(x)} = P*(x)
K—oco

if limk—o0 0k = 0. In addition, if limk_,oo Ko = oo, then the unbiased
estimate P(x) is asymptotically consistent in the quadratic mean sense:

Jim B {[P*(x) - P(x)P} =0.

(oTiA]
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A2: Optimal Smoothing of Parzen (Kernel) Estimates

Parzen estimate with Gaussian kernel:

f
P(x) = 157 2 Flxlys) = 15

YES yeS

[H é —_— (xn;f%yn) }]

neN

optimization by cross-validation (leaving-one-out) method:
~ to maximize the modified log-likelihood function by EM algorithm:

1 1 (Xn_yn)2
D=2kt ey L I 7o {&5)

xeS yeS y#x neN

f(xly,o)
Zues,uyﬁx f(x|u, U) 7

(0,)° = |Z Y o=y alylx)

xeS yeS,y#x

q(y|x) = yes

Remark: Optimal smoothing is crucial in high-dimensional spaces!

(oTiA]
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“Under-smoothed” Kernel Estimate
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A3: Marginal Distributions of a Product Mixture

easily obtained by omitting superfluous terms in products:

P(x) = Z Wi, F(x|m) = Z Wi H fa(xalm), x=(x1,...,xn) €X

meM meM neN
M
> P(x) = Zwm S Aam) T fatalm)=>" wa [] filxalm)
X €X; m=1 X € X neN\i m=1 neEN\i

XC:(X/17Xi27--~7X/k)€XCa XC:X,'IX XX,H C:{l'l,... ik}CN
Pc(xc) = Y wmFc(xcm),  Fe(xclm) =[] fa(xalm)

N nec
PnC(Xn7XC) Wch(Xclm)
Poic(xnlxc) = /=2 = WmPc\Xcim) o
|C( n| C) PC(XC) ;A PC(XC) n( n| )
WmFc(xclm
Prjc(xnlxc) = E Wi (x ) fa(Xn|m), Wm(Xc)ZM

meM PC (XC)

(oTiA]
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A4: Solution of the M-Step - Gaussian Mixture

Gaussian Mixture with a General Covariance Matrix:

_ Y et x o)A X —
F(x|cm, Am) = (QW)NdetAmeXp{ 2(x cm) AL (x—cm)}
P(x)= > WmF(x|Cm,Am)
meM

implicit form of the M-Step:
(c,,A )= arg max {Z’y ) log F(x|cpm, m)}
€msAm) x€ES

explicit solution:

=S %, () = =

g > yes q(mly)
A;:Zw(x)(x—c x—c ny xxT (/)T
xeS xeS

(oTiA]
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A5: Solution of the M-Step - Discrete Product Mixture

£ (Jm) = arg max {Z d ’"||;|) |ogfn(xn\m)}, neN, meM,

Z 5 §7Xn) =1, x, € X,

EEAX,

f2(m) —argmax{z(zcs@n) , |) faalm) )

XeES €A,

fo(lm) = arg max { 37 37 a(6,x) |5| fo(lm) |

fex, xeS

f.(.|m) = arg max { Z (Zé &, Xn) m||;‘(|)> log fn(f\m)},

£EX, x€S8

mIX)
= =>4 (& xn) 2 WIS|
xeS
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A5: Invariance of EM Algorithm Under Linear Transform

EM estimate of a Gaussian mixture is invariant under linear transform

Let the parameters {Wpm, ftmns Omn, m € M, n € N'} of a Gaussian product
mixture define a stationary point of EM algorithm, i.e. they satisfy the EM
iteration equations. Further let y = T(x) be a linear transform of the vectors
x € X a of the mixture parameters :

Yn = anXp + by, x € S, Wp= Wn, fimn = anfmn + Bny Tmn = @nOmn-

Then the transformed parameters { W, fimn, Gmn, m € M, n € N'} also define
a stationary point of EM algorithm in the transformed space ).

Proof: The following equations can be verified by related substitutions:

1 ~ 1
F(y|p’ma6-m) = 7F(X|ll'mao-m)7 P(y) = 7P(X)
[Tnenr an [Tnen an
. 1 Son)? =
Mmn = W%Yﬂ(my% (O'mn |S‘ Z an m\y)

g(mly) =q(m|x), y=T(x), x€S, meM (OTiA]
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A6: Monotonic Property of Structural EM Algorithm

structural mixture is a special case of product mixture model, i.e.

_ q(mlx)
W,, = 18] < Zq(mlx 2 (m) = arg r??m){xz: m\3| Iogf(x,,|m)}

It is necessary to prove, that the monotonic property holds for the
optimized structural parameters ¢,,,. We use the inequality :

12 3 G S { 3 e [FE ) =0

XGS meM

and, making substitution for F'(x|m), F(x|m), we obtain:
G (x|m, ¢1n)
—L> m|x)log | —/————"
PPN rnl)

—L= Z Z{ > q(mix)log [f;((x”lg))] {?((2(3))}%"}

meM xes meM n n Y
(oTiA)
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Monotonic Property of Structural EM Algorithm

The last inequality can be rewritten in the form:

W) L= (6 sbmn)vmﬁzz%n (mlx) Iogfé Ig

meM neN meM nEN

where 'y,'nn is the structural optimization criterion:

fy (Xa|m)
éq(m| log -2 00 neN,meM

In view of the above definition of f, (. |m) we can write for arbitrary f,(:|m) :

Z (m]|x) log f, (xn|m) > 5] Z (m|x) log f,(x,|m)

x€eS xXES

mn |S|

Sl

Therefore, the last sum in the inequality (*) is non-negative and, for the
same reason, we have an >0 forallne N,me M;

By setting ¢mn =1 for the R highest values 7,,,,,, we obtain

L'=L> 3" > (dmn — bmn) Ymn = 0 q.e.d. o
meM neN S



Interpretation of Structural Criterion - Discrete Mixture

fa(xalm), x, € X,, n € N = discrete probability distribution

1 f (xn|m)

Ymn = Exezsq(mp() |Og fn(Xn|0) ’ HEN’mEM
Z (& xn) =1, xn € X,
§EX,
’ 1 fr:(X"|m)
S 3(&,xn)| | :
Ton = Tg] x;q(mn[% (&x0)] log 702 S
S f, (¢[m)
= 8(&, xn | ;
Ymn = T3] g;n [X%;g (&, x )q(m|X)} %8 £ (£10)
’ ’ ’ f/ ’ ’
o = W 3 Fo(€lm)log T — w17 (). £,(10),

£EX,

Ymn =~ Kullback-Leibler information divergence [OTia)
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Interpretation of Structural Criterion - Gaussian Mixture

_ 2
Gaussian densities:  f,(Xp|4mn, Omn) = \/2?% exp{ — %%")}

’

¢ 1 n(Xn|:“ )
— E (m|x)lo In\XnlBmn: Tmn) neN,meM
Ymn | = | g f (Xn|,u0mn7 UOn)7 ) )

q(mlx) |
Z Wi |S|

o O O = ) (0 uom]

> o Arwl | 2ow)
i 2 Y Y

Yoo = Wm (an Mzon) + (O'mn)2 N (O'mn)2 _
2 (UOn) (UOn) (O'On)

it is easily verified:

’ ’ ’ f(X |M/ O’l ) ’ ’
= f log =m0y, = w, (£, (| m), fa(-|0
W /Xn n(Xn|an70mn) og fn(Xn|,UJ0na0'0n) Xn W ( n( lm)> n( | ))

= Ymm ~ “continuous” Kullback-Leibler information divergence [UTiA
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AT: Non-ldentifiability of Discrete Product Mixtures

Definition of Identifiability of Mixtures (Teicher, 1963)

The class of Mixtures P = {P(x,0) : 6 € ©} is identifiable, if the parameters
0, 0 €O of any two equivalent mixtures
P(x,0) = P(x,0), Vx€eX

may differ only by the order of components.

Theorem ( Grim, 2001; cf. Teicher, 1963, 1968; Gyllenberg et al., 1994;)

Arbitrary discrete product mixture (x, € X,, |X,| < o0)

P(x) = Z F(x|m) = Z W H fr(Xn|m)

meM meM neN

has infinitely many equivalent forms with different parameters, if at least one
of the univariate component distributions f;(x;|m) is nonsingular, i.e. satisfies
the condition

0 < fi(x;lm) < 1, for some x; € X;.
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Proof: Non-Identifiability of Discrete Product Mixtures

Proof: Let 0 < fi(x;|m) < 1 for some i € N, x; € X; and m € M. Then, for
any 0 < a <1, 8 =1— «, we can construct two different probability
distributions f; (-|m), f. (-|m) in such a way that the distribution f;(:|m)
represents an internal point of the abscise (f; (-|m), f; (-|m)) in the

| X;|-dimensional space in the sense of the following condition:

(*) fi(€lm) = af (€]m)+ B (€lm), € € A..

Consequently, the nonsingular probability distribution f;(:|m) can be

expressed as a convex combination of two distributions f; (-|m), f,-”(~\m) in

infinitely many ways. By using the above substitution (*) we can write
(%) Wi F(x|m) = wy,F (x|m) + wy, F~ (x|m),

where ’ " ’ ”

W, = QWp, W, = BWn, (W, +w,, = wpy),

Fi(xlm)=f'(xilm) T falalm), F'(xlm)=f"0ilm) ] falxlm)

neN ,n#i neN ,n#i

Finally, making substitution (**) for w,,F(x|m), we obtain a non-trivially
different equivalent of the original distribution P(x), g.e.d. UTiA
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A8: Alternative Proof of the EM Monotonic Property

Kullback-Leibler information divergence is non-negative, i.e. :

1(aC10.4 (1x) = 3 a(mlx)iog S0 > 0

oy (mlx) =~

The following proof follows the original idea of Schlesinger. Using notation

— 7 S loEl X waF(xlml, () =

x€S meM Zj:l w; F(x[j)

We can express the log-likelihood functions L and L equivalently by means of
the conditional weights g(m|x), g (m|x):

|5|Z{ >~ a(mix) loglwnF(x|m)] = > q(mix)log a(mlx)}

xe€§S meM meM
= 5 2 { X atmtogluy F (xim)] = 3 a(mix)ogd ()
x€S meM meM

(oTiA]
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Alternative Proof of the EM Monotonic Property

Using the above equations we can express the increment L' — L as follows:

_ |S| Z{ Z (m|x) log [W}—l— Z q(m|x) log q(( ||x))}

x€S meM meM

where the second sum on the right-hand side is the non-negative
Kullback-Leibler divergence:

F'(x|m) /
q(m|x) log I(q(-|x),q (-|x
|5|x§€5:{m§eM: x)log [ ] a0, 4 ()}
and therefore, we can write the inequality:

=18 Z{ D almix) '°g[ (( |,:7))”

xe§S meM

—L> Z [ Z m|x)] |0g7+|8| Z Z (m|x) log F( || ))

meM XES meM xeS Ij
UTIA
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Alternative Proof of the EM Monotonic Property

Making substitution for W/ from the M-Step we obtain the inequality

Z [\S|Z m|x}|og7 Z W Iog—zo

xeS meM
Further, in view of the M-Step definition
q(m|x)
m) = ar max{ y lo Fxm}
F () = g o {3, i5¢ og Flom)

we can write for any component F(x|m) the inequality:

(%) Zq(m|x) log F,(x|m) > Zq(m|x) log F(x|m), me M

x€eS xXES

The monotonic property of EM algorithm follows from the above inequalities:
L—L>Z:Wlog——+-‘S ZZq(m|x Iogl__(| )70
meM | ‘m€A4x€S (‘ )

Remark: The M-Step definition is redundantly strong, the new parameters
need to satisfy only the inequalities (*) = GEM algorithm UTiA
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A9: Monotonic Property of EM Algorithm - Implications

Nondecreasing and above bounded sequence {L(}22, has a finite limit
L* < 0o and therefore the following necessary condition is satisfied:

lim (O =1["<o00 = lim (L&D —(M)=0

t—o0 t—o0

Analogous conditions hold for the sequences {w(*)(m)}s2, and
{g(-[x)}29, m € M, too:

lim (WD (m) —wO(m)[| =0, lim |[g+(m]x) — ¢ (mlx)]| = 0.

t—o0 t—o0

The last limits follow from the inequality

LD — 1O > (WD) [w 5 Z (gDl ([x))

xeS
and from the following general inequality (cf. Kullback (1966)):

> Px)ios 52 2 1 (X 1P - PEo))” 2 51P°() = PP
x€X x€X (OTiA
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A10: M.-L. Estimates versus Approximation Problems

Maximum-likelihood estimate asymptotically minimizes the upper bound of
the Euklidean distance between the true discrete distribution P*(-) and its
approximating estimate P(-).

Proof: Asymptotically, for |S| — oo, we can write
log P(x) = I|m ~(x) log P(x P*(x) log P(
|S\—)oo |S| Z Z ) );{ (x)

where y(x) > 0 is the relative frequency of the discrete vector x in the i.i.d.
sequence S and P* is the true probability distribution. The assertion follows
from the inequality (cf. Kullback, 1966):

3= Pes ' = 3 (321770~ PO0)” = 3100~ PO

xeX

Remark: The m.-l. estimate P(-) is justified as approximation of P*(-). [OTiA)
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A1l: Kullback-Leibler Divergence is Non-Negative

Theorem (cf. e.g. Vajda, 1992)

Any two discrete probability distributions {q1, g, . .., qm}, {q1, s, - -, q;v,}
satisfy the following inequality

q”Q)_ qu

meM
where the equality holds only if qm = Qm, for all me M.

>0

Proof: Without any loss of generality we can assume g, > 0 for all m € M
(since Olog0 =0 asymptotically). By Jensens inequality we have:

> qmlogf <log( Z A )=|og( > q;n) =log1 =0,
meM dm meM

where the equality occurs only if ql/ql == q;v,/qM, g.e.d.

Consequence: The following left-hand sum is maximized by q =q:

> Gmloggn < > Gmloganm

meM meM UTiA
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A12: Universality of Discrete Product Mixtures

Lemma (see e.g. Grim, 2006)

Let the table values pK) k = 1,...,K, K = |X| define a probability
distribution P(x) on a discrete space X':

P(xW)=pk — xWex k=1,... K, x=u0 {xK}

Then the discrete probability distribution P(x) can be expressed as a product
distribution mixture by using d- functions in the product components:

P(x) =) wiF(x|k) = Zp(k I 6Ga x89), xex.
k=1

k=1 neN

Proof: The products of d-functions in the components uniquely define the
points x(k) € X corresponding to the respective probabilistic table values p(¥):

F(x|k) = Héxmx( ), we=pH®, k=1,... K.
neN

Remark: The proof has only formal meaning, the mixture approximation
based EM algorithm i icall fficient. —
ased on algorithm is numerically more efficien [OTia)
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Al13: EM algorithm for Multivariate Bernoulli Mixtures

example of EM algorithm: multivariate Bernoulli mixture

1/ Estimation of Multivariate Bernoulli Mixture by means of EM algoritmu
/
//short X[NN] ; // binary data vector
//int NN; // dimension of binary vectors
//int w4; // number of mixture components
//double P[MM] [NN],SP[MM] [NN]; // mixture parameters and related estimates
//double  WMM],SW[1d] ; // component weights and related estimates
//double FX[MM] ; // component values for a given vector X[NN]
//double FXM, SWM, Q , SUM, SWM; // auxiliary variables
//int N,M,IT,ITERMAX; // auxiliary variables
for (IT=1; IT<=ITERMAX; IT++)
/] *xxrER FEAEEEIEEREHAEREEAKEEE R RE
{ for(M=0; MKMM; M++) {SW[M]=0.0; for (N=0; N<NN; N++) SP[M][N]=0.0;}
=0.0;
for (J=1;J<=JJ; J++) // cycle over all data vectors X
{ READ(X); SUM=0.0; // to read X from the input data set
for (M=0; MQMM; M++)
{ FxM=W[M];

for (N=0; N<NN; N++) if (X[N]==1) FXM*=P[M][N]; else FXM*=(1-P[M][N]);
FX[M]=FXM; SUM+=FXM;

} // end of M-loop

Q=Q+1og (SUM) ;

for (M=0; M<MM; M++)

{ G=FX[M]/SUM; SW[M]+=G; for(N=1; N<=NN; N++) if (X[N] ) SP[M][N]+=G;
} // end of M-loop

} // end of J-loop

Q=Q/J3J3;

for (M=0; M<MM; M++) // to compute the new parameter estimates

{ SWM=SW[M]; W[M]=SWM/JJ; for(N=0; N<NN; N++) P[M][N]=SP[M][N]/SuM;
} // end of M-loop

print (IT,Q) ;
} // end of IT-loop
[/ RRrxER FAEEKEEKEREEAEEKIAKEXEEK KK

printf("\n End of the EM algorithm\n\n");
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Al4: EM algorithm for Gaussian Product Mixtures

example of EM algorithm: multivariate Gaussian product mixture

// Estimation of the Gaussian product mixture by means of EM algorithm
/

//int IT,N,M; long K; double F,G,FXM,SWM,SUM, FMAX,QO0; // global variables

//double  X[DNNI; // real data vector

//double  FX[DM] ,W[DMM] , SW [DbDM] ; // components, weights, weight estimates

//double  C[DMM] [DNN], A[DMM][DNN]; // component means and variances

//double  sSCIDMM] [DNN],SA[DMM] [DNN]; // new estimates of means and variances

for (IT=1; IT<=ITMAX; IT++) // iteration loop

/,

{ g=0.0
for (=1 // logarithmic parameters and initial values
{ swiM

F=log (W [M] +RMIN) -NN2LN2PT ;

£ox ( og (A[M] [N]) ; SC[M] [N]=RMIN; SA[M][N]=RMIN;}
WIM]=2*F; // to simplify the evaluation of exponents
} // end of M-loop
for (I=1;I<=K;I++) // cycle over all data vectors X
{ READ(X); FMAX=-RMAX;
for (M=1; M<=MM; M++) 1 luation of the 1 ithm of
{ FXM=W[M]; for(N=1; N<=NN; N++) (F=(X[N]-C[M][N])/A[M][N]; FXM-=F*F;}
FXM/=2.0f£;  FX[M]=FXM; if (FXDFMAX) FMAX=FXM;
) // end of M-loop

SUM=0.0;

for (M=1; M<=MM; M++)

{ FXM=FX[M]-FMAX;
FX[M]=FX;

} // end of M-loop

Q=Q+1og (SUM) +EMAX ;

for (M=1; M<=MM; Mt+)

{ G=FX[M]/SUM; SW[M]+=G;

for (N=1; N<=NN; N++) {F=X[N]; SC[M] [N]+=G*F; SA[M] [N]+=G*F*F;}

// end of NM-loop

// end of K-loop

// to compute the component values and P (X)
if (FROMINLOG) (FXM=exp (FXM); SUM+=FXM;) else FXM=0.0;

// to compute the log-likelihood criterion

for (M=1; M<=MM; M++) 17
{ SWM=SW[M]; WI[M]=SWM/K;
for (N=1; N<=NN; N++)
{ F=sc[M][N]/sWM; C[M][N]=F;
) // end of N-loop
} // end of M-loo]
printf ("\nIT=t2d Q=$15.71f \n",IT,Q);

to compute the new parameter estimates

A[M] [N]=sqrt (SA[M] [N]/SWM-F*F) ;

/,
} // end of IT-loop

Remark: Possible solution of the “underflow” problem.
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Prof. M.l. Schlesinger with his wife

At Karlétejn castle during his visit in Prague in 1995. UTiA
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