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PRODUCT MIXTURES - RECAPITULATION

PURPOSE: approximation of unknown probability distributions

Computational properties of product distribution mixtures

efficient estimation of multivariate distribution mixtures (!)

suitable to approximate multi-modal, real-life probability distributions

with increasing number of components the Gaussian mixtures
approach the asymptotic accuracy of Parzen (kernel) estimates

unlike Parzen estimates the product mixtures are optimally
“smoothed” by the efficient EM algorithm

directly available marginal probability distributions (!)

the mixture parameters can be estimated from incomplete data

enable the information controlled sequential decision-making

product mixtures can be interpreted as probabilistic neural networks

enable the structural optimization of probabilistic neural networks

provide information criterion for the optimal feature subset Literature
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EM Estimation of Multivariate Bernoulli Mixtures

COMPONENTS: products of univariate Bernoulli distributions

binary data: numerals on a binary raster, results of biochemical tests ...

x = (x1, x2, . . . , xN) ∈ X , xn ∈ {0, 1}, X = {0, 1}N

F (x |m) = F (x |θm) =
∏
n∈N

fn(xn|θmn) =
∏
n∈N

θxnmn(1− θmn)1−xn

L =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF (x |θm)], S = {x (1), . . . , x (K)}

EM iteration equations: Implementation Example

q(m|x) =
wmF (x |θm)∑M
j=1 wjF (x |θj)

, x ∈ S, m = 1, 2, . . . ,M

w
′

m =
1

|S|
∑
x∈S

q(m|x), θ
′

mn =
1

w ′
m|S|

∑
x∈S

xnq(m|x)

Remark: Product of a large number of parameters θmn may underflow.
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EM Estimation of Gaussian Product Mixtures

COMPONENTS: Gaussian densities with diagonal covariance matrices

F (x |µm,σm) =
∏
n∈N

1√
2πσmn

exp
{
− (xn − µmn)2

2σ2
mn

}
, x ∈ X

L =
1

|S|
∑
x∈S

logP(x) =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF (x |µm,σm)]

EM iteration equations: (m ∈M, n ∈ N ) Implementation Example

q(m|x) =
wmF (x |µm,σm)∑M
j=1 wjF (x |µj ,σj)

, x ∈ S,

w
′

m =
1

|S|
∑
x∈S

q(m|x), µ
′

mn =
1

w ′
m|S|

∑
x∈S

xnq(m|x)

(σ
′

mn)2 =
1

w ′
m|S|

∑
x∈S

(xn − µ
′

mn)2q(m|x) =
1

w ′
m|S|

∑
x∈S

x2
nq(m|x) − (µ

′

mn)2

no matrix inversion ⇒ no risk of ill-conditioned matrices
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Structural Mixture Model (Grim et al. 1986, 1999, 2002)

binary structural parameters: φm = (φm1, . . . , φmN) ∈ {0, 1}N

F (x |m) =
∏
n∈N

fn(xn|m)φmn fn(xn|0)1−φmn ,

fn(xn|0) : fixed “background” distributions, usually fn(xn|0) = P∗n (xn)

PRINCIPLE: if φmn = 0 then fn(xn|m) is replaced by fn(xn|0)

P(x) =
∑
m∈M

F (x |m)wm = F (x |0)
∑
m∈M

G (x |m,φm)wm,

G (x |m,φm) =
∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

, F (x |0) =
∏
n∈N

fn(xn|0) > 0

“the background distribution” F (x |0) reduces in the Bayes formula:

p(ω|x) =
P(x |ω)p(ω)

P(x)
=

∑
m∈Mω

G (x |m,φm)wm∑
j∈M G (x |j ,φj)wj

≈
∑

m∈Mω

G (x |m,φm)wm

MOTIVATION: component-specific feature selection, “dimensionless”
computation, structural neural networks.
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Structural EM Algorithm - Discrete Mixture

fn(xn|m), xn ∈ Xn, n ∈ N ≈ discrete probability distributions

L =
1

|S|
∑
x∈S

log
[ ∑
m∈M

G (x |m,φm)wm

]
, G (x |m) =

∏
n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

EM iteration equations: (m ∈M, n ∈ N , x ∈ S)

q(m|x) =
G (x |m,φm)wm∑
j∈M G (x |j ,φj)wj

, w
′

m =
1

|S|
∑
x∈S

q(m|x)

f
′

n (ξ|m) =
∑
x∈S

δ(ξ, xn)
q(m|x)

w ′
m|S|

,

structural optimization: φ
′

mn = 1 for the R largest values γ
′

mn:

γ
′

mn =
∑
x∈S

q(m|x)

w ′
m|S|

log
[ f ′

n (xn|m)

fn(xn|0)

]
= w

′

m

∑
ξn∈Xn

f
′

n (ξn|m) log
f

′

n (ξn|m)

fn(ξn|0)

Remark: The last sum is Kullback-Leibler information divergence.
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Structural EM Algorithm - Gaussian Mixture

Gaussian densities: fn(xn|µmn, σmn) = 1√
2πσmn

exp
{
− (xn−µmn)2

2σ2
mn

}
L =

1

|S|
∑
x∈S

log
[ ∑
m∈M

wm

∏
n∈N

(
fn(xn|µmn, σmn)

fn(xn|µ0n, σ0n)

)φmn ]
,

EM iteration equations: (m ∈M, n ∈ N , x ∈ S)

q(m|x) =
G (x |m,φm)wm∑
j∈M G (x |j ,φj)wj

, w
′

m =
1

|S|
∑
x∈S

q(m|x),

µ
′

mn =
1

w ′
m|S|

∑
x∈S

xnq(m|x), (σ
′

mn)2 =
1

w ′
m|S|

∑
x∈S

x2
nq(m|x)− (µ

′

mn)2,

structural optimization: φ
′

mn = 1 for the R largest values γ
′

mn :

γ
′

mn =
w

′

m

2

[
(µ

′

mn − µ0n)2

(σ0n)2
+

(σ
′

mn)2

(σ0n)2
− log

(σ
′

mn)2

(σ0n)2
− 1

]
= w

′

mI (f
′

n (·|m), fn(·|0))

Remark: γ
′

mn is the Kullback-Leibler information divergence.
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Statistical Approach to Pattern Recognition

x = (x1, . . . , xN) ∈ X : N-dimensional data vectors

Ω = {ω1, ω2, . . . , ωJ} : finite set of classes with the probabilities p(ω)

P(x |ω), ω ∈ Ω : class-conditional distributions (estimates)

BAYES FORMULA: class-probabilities p(ω|x) given a sample x ∈ X

p(ω|x) =
P(x |ω)p(ω)

P(x)
, P(x) =

∑
ω∈Ω

P(x |ω)p(ω), x ∈ X

BAYES DECISION FUNCTION: minimizes the probability of error

d(x) = ω0 = arg max
ω∈Ω
{p(ω|x)} = arg max

ω∈Ω
{P(x |ω)p(ω)}

SOLUTION: estimation of class-conditional distributions P(x |ω) given the
training data sets Sω = {x (1), . . . , x (Kω)}, ω ∈ Ω

Remark: Product components enable local feature selection (structural
models) and sequential recognition.
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Example 1: Recognition of Numerals on a Binary Raster

PROBLEM: recognition hand-written numerals

Database NIST SD19 contains about 400 000 numerals scanned from a
binary raster, about 40 000 for each class; it is composed of 7 comparable
parts written by the personnel of the US Bureau of Census, except for the
part 4 written by scholars from Bethesda (worse quality)

TRAINING AND TEST DATA:

odd data vectors used for training (
∑
|Sω| = 201485 numerals)

even data vectors used as test set (
∑
|STω | = 201479 numerals)

numerals normalized to raster size 32x32 (i.e. dimenion N = 1024)

data extension: three rotations of each numeral (-10,-5,+5 degrees)

⇒ about 80 000 training resp. test numerals for each ω ∈ Ω

binary numerals:
xn ∈ {0, 1}, x = (x1, x2, . . . , x1024) ∈ X , X = {0, 1}1024

number of classes: |Ω| = 10, Ω = {ω0, ω1, . . . , ω9}
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Example 1: Hand-Written Numerals NIST SD19

Examples of numerals from the NIST SD19 normalized to 32x32 raster

“average numerals” (marginal probabilities of training data)
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Example 1: Recognition of Numerals on a Binary Raster

SOLUTION: (Grim J., Hora J., 2010)

approximation of the class-conditional distributions P(x |ω) by structural
Bernoulli mixtures in the original binary space X = {0, 1}1024

P(x |ω) = F (x |0)
∑

m∈Mω

wm

∏
n∈N

[(
θmn

θ0n

)xn (1− θmn

1− θ0n

)1−xn
]φmn

, ω ∈ Ω

F (x |0) =
∏
n∈N

θxn0n(1− θ0n)1−xn , θ0n = P{xn = 1}

F (x |0): fixed background distribution (θ0 ≈ ”mean”numeral)

total number of components:
∑
ω |Mω| = 1571

sum of non-zero structural parameters:
∑

m,n φmn = 1462373, ≈ 90%

random initial values: θmn ∈ 〈0.1, 0.9〉
stopping rule: the relative increment threshold (L

′ − L)/L < 0.0001)
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Example 1: Recognition of Numerals on a Binary Raster

component parameters θmn as gray levels in raster arrangement

(white raster fields: ”unused”variables specified by φmn = 0)
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Example 1: Recognition of Numerals on a Binary Raster

rows: classification of numerals from the given class
last column: classification error for the given class
last row: false positive classifications

CLASS 0 1 2 3 4 5 6 7 8 9 error

|Sω|: 20182 22352 20038 20556 19577 18303 19969 20947 19790 19767

0 19950 8 43 19 39 32 36 0 38 17 1.1%

1 2 22162 30 4 35 7 18 56 32 6 0.9%

2 32 37 19742 43 30 9 8 29 90 16 1.5%

3 20 17 62 20021 4 137 2 28 210 55 2.6%

4 11 6 19 1 19170 11 31 51 30 247 2.1%

5 25 11 9 154 4 17925 39 6 96 34 2.1%

6 63 10 17 6 23 140 19652 1 54 3 1.6%

7 7 12 73 10 73 4 0 20497 22 249 2.1%

8 22 25 53 97 30 100 11 11 19369 72 2.1%

9 15 13 25 62 114 22 3 146 93 19274 2.5%

false pos.: 197 139 537 396 352 462 148 328 665 699 1.84%

Mean classification error: 1.84%
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Example 1: Example of a Raster Field Permutation

Examples of permutated numerals and related average images

Remark: Recognition accuracy of permutated numerals is identical.
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Example 1: Optimal Sequential Recognition (Grim 2014)

choice of the variable xn by using conditional information IxD
(Xn,Ω):

Remark: Odd rows display the expected image, even rows show
the raster field informativity and finally the hidden image.
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Example 1: Optimal Sequential Recognition (Grim 2014)

choice of the variable xn by using conditional information IxD
(Xn,Ω):

Remark: The red squares denote the next optimally chosen field.
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Example 1: Optimal Sequential Recognition (Grim 2014)

choice of the variable xn by using conditional information IxD
(Xn,Ω):

Remark: The red squares denote the next optimally chosen field.
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Example 1: Optimal Sequential Recognition (Grim 2014)

choice of the variable xn by using conditional information IxD
(Xn,Ω):

Remark: Only seven pixels suffice to recognize the numeral correctly.
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Example 1: Optimal Sequential Recognition (Grim 2014)

choice of the variable xn by using conditional information IxD
(Xn,Ω):

Remark: Only seven pixels suffice to recognize the numeral correctly.
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Example 2: Recognition of Chess-Board Images

Problem:

recognition of two image classes generated by random moves
of rook (class ω1) resp. knight (class ω2)

chessboard: 16 x 16 fields ⇒ problem dimension: N = 256
number of random moves: until 10 different occupied fields

x = (x1, . . . , x256) ∈ {0, 1}256, xn ∈ {0, 1},
256∑
n=1

xn = 10, Ω = {ω1, ω2}

Properties of the problem:

statistically non-trivial problem, overlapping classes

arbitrary large randomly generated training data

arbitrary large randomly generated test data

no simple informative features available

PROBLEM: Relation between model complexity and ”overfitting“.
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Example 2: Recognition of Chess-Board Images

Examples of randomly generated images

class ”rook”(upper part) resp. ”knight”(lower part)
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Example 2: Recognition of Chess-Board Images

Marginal probabilities for class ”rook”(left) resp. ”knight”(right)
as gray-scale levels in raster arrangement
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Example 2: Recognition of Chess-Board Images

SOLUTION: (Grim J., Hora J. 2010)

approximation of conditional distributions P(x |ω1),P(x |ω2) by multivariate
Bernoulli mixtures (N = 256)

P(x |ω) =
∑

m∈Mω

wm

256∏
n=1

θxnmn(1− θmn)1−xn , xn ∈ {0, 1}, ω ∈ Ω

number of mixture components: |Mω| = 1, 2, 5, 10, 20, 50, 100, 200, 500

initial component weights identical: wm = 1/|Mω|
training sample size: |Sω| = 1000, 10000, 100000

randomly initialized parameters θmn from interval 〈0.1, 0.9〉
EM stopping rule: relative increment threshold (L

′ − L)/L < 0.0001
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Example 2: Recognition of Chess-Board Images

Parameter estimates θmn for the class ”knight”(50 components)
as gray levels in raster arrangement



Product Mixtures Pattern Recognition Mixture Models Literature General model Numerals Chess-Board Documents

Example 2: Recognition of Chess-Board Images

Parameter estimates θmn for the class ”rook”(50 components)
as gray levels in raster arrangement
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Example 2: Recognition of Chess-Board Images

RECOGNITION OF CHESS-BOARD IMAGES (error in %)

|Mω| 1 000 200 000 10 000 200 000 100 000 200 000

1 34.70 41.56 39.59 40.38 39.90 40.02

2 13.10 15.83 16.54 16.65 16.42 16.48

5 1.65 7.72 6.60 7.00 6.49 6.60

10 0.95 9.21 5.40 5.90 4.04 4.34

20 0.15 8.76 3.91 4.90 2.73 2.89

50 0.00 9.35 2.01 4.54 1.37 1.90

100 0.00 11.02 1.22 5.57 0.84 1.68

200 0.00 15.40 0.69 8.35 0.45 1.92

500 0.00 17.77 0.20 14.66 0.14 3.76

training set (bold): |Strainω | = 1000, 10 000, 100 000
independent test set: |Stestω | = 200 000

Conclusion: for a given training set there is an optimal model
complexity
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Example 2: Recognition of Chess-Board Images

RECOGNITION OF CHESS-BOARD IMAGES BY STRUCTURAL
MIXTURE MODEL

|Mω| 1 000 200 000 10 000 200 000 100 000 200 000

4 13.80 16.48 25.53 26.53 16.91 16.92

8 6.45 9.97 10.96 11.32 7.28 7.29

20 5.70 10.97 5.14 5.77 4.70 4.72

40 8.65 13.63 4.20 4.73 3.29 3.32

80 4.20 12.91 6.12 6.88 1.91 1.92

200 0.25 11.46 3.36 4.76 1.83 1.85

400 0.00 18.11 3.54 4.70 3.10 3.20

800 0.00 18.50 3.88 4.82 5.42 5.45

2000 0.00 18.75 2.84 6.39 2.71 2.73

Remark: The structural mixture model is less prone to “overfitting”. The
training set error (resubstitution, bold) is comparable with the independent
test set error.
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Example 3: Classification of Text Documents (Grim et al. 2008)

PROBLEM: automatic classification of text documents

text document:
d = 〈wi1 , . . . ,wik 〉 ≈ reduced to a list of terms from a vocabulary V

vocabulary of terms: V = {t1, . . . , tN} ≈ only informative terms
(by removing conjunctions, endings and rare terms from documents )

“bag of words” representation of documents
(defined by frequencies of vocabulary terms)

x = x(d ) = (x1, . . . , xN) ∈ X ≈ vector of integers
the dimension of x is extreme N ≈ 104 (!!)

xn ≈ frequency of the vocabulary term tn in the document d
|x | =

∑N
n=1 xn ≈ length of document x

Remark: The “bag of words” representation ignores the order of words.
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Example 3: Classification of Text Documents

probabilistic description:

C = {c1, . . . , cJ} ≈ set of document classes

P(x |c)p(c), c ∈ C ≈ class-conditional distribution of documents

p(c), c ∈ C ≈ a priori probabilities of classes

“naive” Bayes classifier:

p(c |x) =
P(x |c)p(c)

P(x)
, P(x) =

∑
c∈C

p(c)P(x |c)

assumes conditional independence of variables:

P(x |c) =
∏
n∈N

fn(xn|c), c ∈ C, N = {1, . . . ,N}

Remark: Naive Bayes classifier ignores the statistical relationship of
vocabulary terms but more complex models did not improve the classification
accuracy despite great effort.
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Example 3: Classification of Text Documents

IDEA: approximation of P(x |c) by Poisson mixtures:

P(x |c) =
∑

m∈Mc

wmF (x |λm) =
∑

m∈Mc

wm

∏
n∈N

fn(xn|λmn)

λmn ≈ mean frequency of the term tn in a document of length |x |
component F (x |λm) is defined as a product of Poisson distributions

probability of frequency xn of the term tn given the length |x |:

fn(xn|λmn) =
(λmn)xn

xn!
e−λmn , (|x | =

N∑
n=1

xn)

given the length of document |x |: ⇒ θmn = λmn/|x |
θmn ≈ probability of occurrence of the term tn in a document

P(x |c) =
∑

m∈Mc

F (x |θm)wm =
∏
n∈N

fn(xn|θmn|x |) =
∏
n∈N

(θmn|x |)xn
xn!

e−θmn|x|

Remark: Mixture of Poisson distributions has M(N + 1) parameters.
(≈ large number since the number of vocabulary terms N is large.)

CONCLUSION: In view of extreme dimensionality N ≈ 104 the
training data set is not large enough to estimate more complex models.
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Example 3: Classification of Text Documents

“structural” multivariate Poisson mixtures: EM algorithm

P(x |c) =
∑

m∈Mc

F (x |θ0)G (x |θm,φm)wm, c ∈ C

F (x |θ0) ≈ fixed “background” distribution common to all document classes

F (x |θ0) =
∏
n∈N

fn(xn|θ0n|x |) =
∏
n∈N

(θ0n|x |)xn
xn!

e−θ0n|x|

G (x |θm,φm) ≈ component functions, φmn ∈ {0, 1} ≈ structural
parameters

G (x |θm,φm) =
∏
n∈N

[
fn(xn|θmn|x |)
fn(xn|θ0n|x |)

]φmn

=
∏
n∈N

[(
θmn

θ0n

)xn

e(θ0n−θmn)|x|
]φmn

“background” distribution F (x |θ0) reduces in Bayes formula:

p(c |x) =
p(c)

∑
m∈Mc

G (x |θm,φm)wm∑
c∈C p(c)

∑
j∈Mc

G (x |θj ,φj)f (j)
.
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Example 3: Classification of REUTERS Documents

text documents REUTERS:

8941 documents in 33 different classes

10105 vocabulary terms (without conjunctions, endings and rare terms)

6431 training documents, 2510 test documents
(≈ “APTE split” : small and multiply classified documents are omitted)

Experiment No. 1 2 3 4 5

# of components: 33 33 35 35 43

# of parameters: 333465 208366 285220 327184 201417

# of parameters [in %]: 100.0 62.5 80.6 92.5 46.4

Error count: 155 156 162 152 147

Mean Error [in %]: 6.17 6.21 6.45 6.07 5.86

Remark: The best classification accuracy (experiment 5) is only slightly
better then the “naive” Bayes classifier error (experiment 1).
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Example 3: Classification of NEWSGROUPS documents

text documents “20 NEWSGROUPS”:

19956 documents in 20 different comparably large classes

31826 vocabulary terms (without conjunctions, endings and rare terms)

13314 training documents, 6632 test documents
(≈ random partition without multiply classified documents)

Experiment No. 1 2 3 4

# of components: 20 40 40 80

# of parameters: 636520 1204262 1102073 1024782

# of parameters [in %]: 100.0 94.6 86.6 40.2

Error count: 1406 1379 1370 1412

Mean Error [in %]: 21.20 20.79 20.66 21.29

Remark: Classification errors differ in tens of documents only, the “naive”
Bayes classifier error (experiment 1) is only slightly worse
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Example 4: Texture Synthesis by Gaussian Mixture Models

grey-level textures: Y = [yij ]
I J
i=1 j=1, yij ∈ {0, . . . , 255} ≈ grey levels

Texture Examples: size 512× 512 pixels, i.e. I = J = 512

Assumption of statistical ”homogeneity”:

We assume that textures can be described locally by means of statistical
properties of internal pixels x1, . . . , xN of a suitably chosen sliding window.

x = (x1, x2, . . . , xN) ≈ internal pixels of a sliding window (N ≈ 102)

S = {x (1), . . . , x (K)} ≈ data obtained by shifting the window

Remark: Windows may overlap ⇒ data vectors x ∈ S are not independent.
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Example 4: Texture Synthesis by Gaussian Mixture Models

Idea of texture synthesis (Grim et al. 2003, 2004, 2005, 2006):

estimation of statistical properties of internal pixels of a sliding window
by means of a Gaussian mixture P(x)

stepwise synthesis (prediction) of an arbitrary large texture image by
means of conditional distributions derived from P(x)

⇒ a unique possibility of visual evaluation of model quality

P(x) =
∑
m∈M

wmF (x |µm,σm) =
∑
m∈M

wm

∏
n∈N

fn(xn|µmn, σmn)

D = {j1, . . . , jl} ⊂ N ≈ defined window part
C = {i1, . . . , ik} = N \ D ≈ undefined window part

related marginal distributions:

xD = (xj1 , . . . , xjl ) ∈ XD , F (xD |µm,σm) = Πn∈D fn(xn|µmn, σmn)

xC = (xi1 , . . . , xik ) ∈ XC , F (xC |µm,σm) = Πn∈C fn(xn|µmn, σmn)
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Example 4: Texture Synthesis by Gaussian Mixture Models

conditional distributions:

PC |D(xC |xD) =
PCD(xC , xD)

PD(xD)
=
∑
m∈M

Wm(xD)F (xC |µmC ,σmC )

Wm(xD) =
wmF (xD |µmD ,σmD)∑
j∈M f (j)F (xD |µjD ,σjD)

≈ nearly binary

PREDICTION: expected window part x̄C given the defined part xD :

x̄C = EC |D{xC |xD} =

∫
xCPC |D(xC |xD)dxC =

∑
m∈M

Wm(xD)µmC ≈ µm0C

µm0C ≈ ”smoothed” tiles missing the high frequency details

SOLUTION: substitution of µm0C by the ”most similar”parts of the
original texture:

µ∗m = arg min
x∈S
{‖µm − x‖2}

⇒ “stochastic sampling”
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Example 4: Texture Synthesis by Gaussian Mixture Models

synthesis of texture ”ratan”: prediction by component means µm

original texture component means µm prediction

image size: 512x512 pixels ⇒ |S| .= 233000

sliding window size: 30x30 pixels, dimension N=900

number of components: |M| = 80

number of EM iterations: t = 15

Remark: Component means µm displayed by grey-levels in window
arrangement.
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Example 4: Texture Synthesis by Gaussian Mixture Models

texture ”ratan”: prediction by using optimal tiles µ∗m

original texture optimal ”tiles” sample synthesis

“realistic” synthesis: component means µm are substituted by similar
pieces of the original texture µ∗m optimally found by Eq.:

µ∗m = arg min
x∈S
{‖x − µm‖2}

Remark: Method of ”stochastic sampling” is similar to texture synthesis
based on sequential connecting of optimally found texture pieces.
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Example 4: Texture Synthesis by Gaussian Mixture Models

texture ”light leather”: ”tile” based prediction based on µ∗m

sliding window size: 20x20 pixels, |S| .= 242000 samples

dimension: N = 20x20 = 400, number of components: |M| = 50

measure of component separation/overlap: q̄max = 0.959

stepwise synthesis by step-size: 12 pixels

Remark: Synthesis by using a small step-size is not the best one, the
optimal step-size corresponds approximately to the half of window-size.
(≈ Probably, the low-dimensional estimates are more reliable ?).
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Example 4: Texture Synthesis by Gaussian Mixture Models

texture ”rough cloth”: ”color tile” prediction based on µ∗m

sliding window size: 30x30 pixels

number of samples (sliding window positions): |S| .= 232000

dimension: N = 30x30 = 900, number of components: |M| = 128

number of EM iterations: t = 15

measure of component separation/overlap: q̄max = 0.993

stepwise synthesis by step-size: 13 pixels

component means µm substituted for prediction by optimally found
pieces of the original color texture µ∗m
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Example 4: Texture Synthesis by Gaussian Mixture Models

texture ”fabric”: stochastic sampling based on the optimal ”tiles”

dimension: N = 30x30 = 900, number of components: |M| = 90

number of samples (sliding window positions): |S| .= 232000

number of EM iterations: t = 20

measure of component separation/overlap: q̄max = 0.997

stepwise synthesis by step-size: 18 pixels

Remark: In case of window size 30x30 pixels the micro-structure is
described correctly but the reproduction of macro-structure fails.
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Example 4: Texture Synthesis by Gaussian Mixture Models

high-dimensional structural model of the texture fabric

dimension: N = 60x60 = 3600, number of components: |M| = 94

number of samples (sliding window positions): |S| .= 205000

measure of component separation/overlap: q̄max = 0.999

stepwise synthesis by step-size: 24 pixels

for synthesis the white tile-pixels are replaced by ”background”

Remark: The macro-structure of the texture fabric is reproduced in better
quality then under small window-size 30x30 pixels.
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Example 5: Search for Textural Defects and Irregularities

gray scale texture: Y = [yij ]
I J
i=1 j=1 , yij ≈ úrovně šedi (≈ xn)

Assumption: homogeneity

Local statistical relationship between the interior window pixels should be
shift-invariant.

window pixels in a given fixed order: x = (x1, x2, . . . , xN) ∈ RN

Method: (Grim et al. 2005)

Approximation of the probability density P(x) by a Gaussian product mixture
(diagonal covariance matrices in the components).

P(x) =
∑
m∈M

wmF (x |µm,σm) =
∑
m∈M

wm

∏
n∈N

fn(xn|µmn, σmn)

fn(xn|µmn, σmn) =
1√

2πσmn

exp{− (xn − µmn)2

2σ2
mn

}
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Example 5: Search for Textural Defects and Irregularities

IDEA:

In view of a successful texture synthesis by using local statistical models we
assume that the mixture distribution P(x) provides a sufficiently accurate
statistical description of the window interior pixels and therefore the mixture
model P(x) can be used to evaluate the typicality of the window interior.

LOG-LIKELIHOOD: logP(x) ≈ measure of the window patch typicality
strongly depends on the gray level deviations

LOG-LIKELIHOOD RATIO: logP(x)/P0(x)
≈ “structural” typicality of window patch x

background distribution:

P0(x) =
∏
n∈N

fn(xn|µ0n, σ0n), µ0n =
1

|S|
∑
x∈S

xn, σ2
0n =

1

|S|
∑
x∈S

x2
n − µ2

0n

Remark: The marginal means and variances µ0n, σ0n are nearly identical for
all image pixels xn, n ∈ N ⇒ the log-likelihood ratio is less sensitive to
gray-level changes and is more influenced by the structural irregularities.
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Example 5: Search for Textural Defects and Irregularities

Local analysis of texture “cushion”:

log-likelihood values logP(x) resp. log P(x)
P0(x) displayed as gray levels at the

central pixel of the sliding window

original image L-likelihood LR-likelihood

Remark: The log-likelihood values logP(x) are rather sensitive to gray-level
changes. Thus, the hardly visible light pixels in the texture cushion (original
image) are indicated as dark patches of window shape (medium image).
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Example 5: Search for Textural Defects and Irregularities

Local analysis of texture “ratan”:

log-likelihood values logP(x) resp. log P(x)
P0(x) displayed as gray levels at the

central pixel of the sliding window:

original image L-likelihood LR-likelihood

Remark: The log-likelihood ratio values log(P(x)/P0(x)) are sensitive to
structural deviations and less influenced by gray levels. Thus the irregularities
of “ratan” (left) are better indicated on the right-hand image based on the
log-likelihood ratio log(P(x)/P0(x)).
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Example 5: Search for Textural Defects and Irregularities

Irregularity analysis of texture “cushion”:

original image L-likelihood LR-likelihood

red color intensity: ≈ unusual (atypical) locations (defects) in texture

medium image: ≈ low likelihood values: logP(x)

image on the right : ≈ low likelihood ratio values: log P(x)
P0(x)
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Example 5: Search for Textural Defects and Irregularities

Irregularity analysis of texture “ratan”:

original image L-likelihood LR-likelihood

red color intensity: ≈ unusual (atypical) locations (defects) in texture

medium image: ≈ low likelihood values: logP(x)

image on the right : ≈ low likelihood ratio values: log P(x)
P0(x)
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Example 5: Search for Textural Defects and Irregularities

Irregularity analysis of texture “cloth”:

original image L-likelihood LR-likelihood

red color intensity: ≈ unusual (atypical) locations (defects) in texture

medium image: ≈ low likelihood values: logP(x)

image on the right : ≈ low likelihood ratio values: log P(x)
P0(x)
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Example 5: Search for Textural Defects and Irregularities

Irregularity analysis of texture “flowers”:

original image L-likelihood LR-likelihood

red color intensity: ≈ unusual (atypical) locations (defects) in texture

medium image: ≈ low likelihood values: logP(x)

image on the right : ≈ low likelihood ratio values: log P(x)
P0(x)
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Example 5: Search for Textural Defects and Irregularities

Irregularity analysis of texture “carpet”:

original image L-likelihood LR-likelihood

red color intensity: ≈ unusual (atypical) locations (defects) in texturee

medium image: ≈ low likelihood values: logP(x)

image on the right : ≈ low likelihood ratio values: log P(x)
P0(x)
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Example 5: Texture Analysis by Local Statistical Models

data vectors x ∈ S generated by shifted window may overlap (!) and
therefore they are not independent

⇒ basic principle of the maximum-likelihood estimates is violated

the data set S corresponds to a “trajectory” in the space X produced by
the shifting window (⇒ it is not representative)

unlike other problems (recognition, texture synthesis, prediction)
the estimated mixture P(x) is applied only to the original data S,
⇒ there is no risk of ”overfitting”

the log-likelihood criterion optimally “fits” the estimated mixture P(x)
to the original data set S
⇒ the estimated mixture P(x) is well applicable to the original data
x ∈ S in view of the underlying estimation method

⇒ the likelihood value logP(x) is well applicable as a measure of
”typicality”of the vectors x ∈ S
the missing independence of the vectors x ∈ S is less relevant because
the estimated mixture P(x) is not applied to independent data
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Example 6: Evaluation of Screening Mammograms

Statistical Data of Breast Cancer:

breast cancer happens to about 8% of women during their lifetime

occurrence of malignant findings in screening mammograms is only
about 1 to 3 of 1000

5 to 10% of findings is proposed for surgical verification by biopsy

about 60 to 80% of biopsies result in benign diagnoses
(⇒ unnecessary physical trauma and emotional stress)

retrospective examinations report about 10 to 20% false negative
results of screening mammogram evaluation

total number of screening mammograms evaluated worldwide
in one year may be of order of millions

Meaning of Mammographic Screening:

early detection of malignant abnormalities by mammographic screening is the
only effective tool to decrease the breast cancer mortality rates
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Example 6: Evaluation of Screening Mammograms

Aim of Log-Likelihood Evaluation:

to emphasize mammographic lesions and facilitate diagnostic evaluation of
screening mammograms

LOG-LIKELIHOOD IMAGE:
logP(x) ≈ measure of typicality of the window patch x

Remark: low values of logP(x) displayed as dark pixels should indicate
less-probable “unusual” or “suspect” locations of mammogram

LOG-LIKELIHOOD RATIO:
logP(x)/P0(x) ≈ not applied

Remark: Log-Likelihood Ratio Image is not applied to screening
mammograms because the grey-level deviations have diagnostic meaning and
should not be suppressed.
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Example 6: Computational Details of Evaluation

source database: 2600 full mammograms of South Florida University
http://marathon.csee.usf.edu/Mammography/Database.html

four-view (full) mammogram: two medio-lateral and two cranio-caudal
images

mirror transform is applied to right-hand-side images to utilize the
underlying symmetry (alternatively: both versions of each view)

square window of size 13 x 13 pixels with cut-off corners,
dimension of x is N = 145 (= 169 – 4× 6)

M = 36 mixture components, randomly initialized parameters

large data set |S| ≈ 105 − 106 obtained by scanning the image with the
search window

local statistical model is estimated from a single mammogram

statistical model is invariant with respect to arbitrary linear transform of
gray scale
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Example 6: Original and Log-Likelihood Image

original image log-likelihood image



Product Mixtures Pattern Recognition Mixture Models Literature Textures Texture Defects Mammographic Screening Forenzńı Inpainting Census Census

Example 6: Original and Log-Likelihood Image

original image log-likelihood image
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Example 6: Original and Log-Likelihood Image
original image log-likelihood image
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Example 6: Original and Log-Likelihood Image
original image log-likelihood image
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Example 6: Indication of “Micro-Calcifications” by Spots

original micro-calcifications corresponding dark patches

Remark: Each position of the window containing a light pixel implies a lower
value of logP(x). ⇒ A light pixel is identified as a dark spot of
window-size.
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Example 6: Indication of “Masses” by Contour-Lines

part of the screening mammogram containing suspect “masses”

Remark: The masses may be quite subtle, may have smooth boundaries and
different shapes. Detection and classification of masses is more difficult than
detection of micro-calcifications.
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Example 6: Indication of “Masses” by Contour-Lines

contour lines around “masses” and at the mammogram boundaries

Remark: Log-likelihood values logP(x) are typically dominated by a single
component of the mixture which is most adequate to the underlying region.
The “switching” of components at the boundaries of different regions
accompanied by decreased log-likelihood values is responsible for the arising
contour lines.
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Example 6: Indication of “Masses” by Contour-Lines

contour lines displayed by the inverse log-likelihood image

Remark: The most apparent demonstration of contour lines can be seen at
the mammogram boundaries characterized by continuously decreasing grey
levels. The contour lines may help to evaluate possible contralateral findings
or multifocal lesions because regions having similar properties are easily
identified visually.
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Example 6: Rounded Malignant Mass
Gaussian mixture model structural mixture model

Remark: Structural mixture model improves the visibility of lesions.
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Example 6: Segmentally distributed Microcalcification
Gaussian mixture model structural mixture model
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Example 6: Malignant Mass of Asymmetric Density
Gaussian mixture model structural mixture model
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Example 6: Evaluation of Screening Mammograms

SUMMARY:

aim: to facilitate diagnostic evaluation

principle: to emphasize lesions by statistical model as atypical locations

advantage: log-likelihood image has a clear statistical interpretation

disadvantage: the statistical model cannot include medical knowledge

local mixture model is estimated from the evaluated mammogram only

⇒ each mammogram is evaluated individually

⇒ the method need not be trained by other images

⇒ high variability of mammograms is not relevant

“masses”: emphasized as dark regions with contour lines

“micro-calcifications”: dark spots of the size and shape of window

useful for evaluation of contra-lateral findings and multi-focal lesions

structural mixture model improves the visibility of lesions
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Example 7: Digital Forensic Analysis of Image Data

Specific problem of forensic analysis:

blind detection of possible traces of manipulated locations in images

examples of available methods:

copy-move forgery detection

identification of lighting inconsistencies

detection of periodicity introduced by re-sampling

evaluation of JPEG quantization artifacts

detection of locally different statistical properties

STATE OF ART:

available methods do not allow strict conclusions

accuracy decreases with lossy compression formats

results of detection are not always convincing

only specific types of tampering may be identified
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Example 7: Digital Forensic Analysis of Image Data

WE PROPOSE: (Grim et al. 2010)
detection of suspect regions by unusual local statistical properties

Motivation:

some specific features of images (spectral, textural) can be described locally
by statistical properties of pixels in a small sliding window

digitized color image: Z = [z ij ]
I J
i=1 j=1

z ij = (zij1, zij2, zij3) ∈ 〈0, 255〉3 ≈ three spectral values for each pixel

x ≈ spectral RGB pixel values of the window in a fixed arrangement

x = (x1, x2, . . . , xN) ∈ 〈0, 255〉N

Idea:

estimation of the multivariate probability density P(x)

identification of untypical locations by low likelihood values logP(x)
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Example 7: Digital Forensic Analysis of Image Data

STATISTICAL MODEL: Gaussian mixture of product components

P(x) =
M∑

m=1

wmF (x |µm,σm) =
M∑

m=1

wm

N∏
n=1

fn(xn|µmn, σmn)

fn(xn|µmn, σmn) =
1√

(2π)σmn

exp
{
− (xn − µmn)2

2σ2
mn

}
MODEL ESTIMATION: by means of EM algorithm

Invariance Property:

log-likelihood image is invariant with respect to arbitrary linear transform of
the grey scale of the original image

REMARK: The component means µm are computed as weighted averages
of the sample vectors x ∈ S (cf. EM algorithm) and therefore they are rather
smooth without high frequency details. Thus, inserted image portion with
suppressed high frequencies will be more probable.
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Example 7: Digital Forensic Analysis of Image Data

logP(x) ≈ measure of typicality of the window patch x

logP(x) ≈ displayed as grey level at the central pixel of the window

INTERPRETATION: dark pixels corresponding to the low values of
logP(x) may indicate “untypical” or “suspect” locations of the image

Mechanisms of Forgery Detection:

unusual spectral properties of small areas will be less probable

unusual textural properties of small areas will be less probable

blurred regions will appear more probable (!) because of missing
high-frequency details

scaling of log-likelihood image: logP(x) ∈ 〈µ0 − 2 ∗ σ0; µ0 + 2 ∗ σ0〉

REMARK: In high-dimensional spaces the density values P(x) of adjacent
windows may differ by several orders; therefore the log-likelihood values
logP(x) are more suitable as a measure of typicality.
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Example 7: Digital Forensic Analysis of Image Data

COMPUTATIONAL DETAILS OF NUMERICAL EXPERIMENTS:

small square window of 5x5 pixels with trimmed corners

(large windows tend to smooth out small details)

21 window pixels in three colors imply the model dimension N=63

the estimated mixture density P(x) describes the statistical properties of
the 63 color sample values xn of window patch

training data set S is obtained by scanning the image with the search
window

the source texture images imply training data sets of size |S| ≈ 106

number of components M ≈ 102

EM algorithm: random initialization, stopping rule: relative increment
threshold (≈ 10 - 20 iterations)

computing time: picture: 3M pixels, model: M=20 components,
dimension: N=63, 20 iterations ≈ 15 minutes (standard PC)
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Example 7: Digital Forensic Analysis of Image Data

Original image including an inserted oval region in the left-upper part.
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Example 7: Digital Forensic Analysis of Image Data

The oval part in the left-upper corner having somewhat different textural
properties becomes distinctly lighter in the log-likelihood image.
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Example 7: Digital Forensic Analysis of Image Data

Original image assembled from two parts by auto-stitch software.
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Example 7: Digital Forensic Analysis of Image Data

The slightly blurred left part becomes lighter in the log-likelihood image.
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Example 7: Digital Forensic Analysis of Image Data

Original picture assembled from three parts by auto-stitch software.
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Example 7: Digital Forensic Analysis of Image Data

The medium slightly blurred (incorrectly focused) part becomes lighter.
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Example 7: Digital Forensic Analysis of Image Data

Concluding Remarks:

Properties of the Log-Likelihood Image:

component means computed as weighted averages of data vectors are
rather smooth

log-likelihood image is invariant with respect to arbitrary linear
transforms of the grey scales

even small differences in brightness, resolution, frequency content or
texture may cause visible changes in the log-likelihood image

Identification of Suspect Regions by Local Statistical Model:

forgery detection by local statistical models is a blind method

applicable to images of unknown origin without any prior information

no specific type of image tampering is assumed

capable to expose image manipulations of various kinds

reasonably resistent to lossy information compression
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Example 8: Image Inpainting by Local Prediction

PRINCIPLE: (Grim et al. 2008)

estimation of local statistical image model as a Gaussian product
mixture P(x)

stepwise prediction of missing pixels by using conditional mixtures

known part of the sliding window:
xC = (xi1 , . . . , xik ), C = {i1, . . . , ik} ⊂ N

conditional distribution for the missing pixel variable xn:

Pn|C (xn|xC ) =
∑
m∈M

Wm(xC )fn(xn|µmn, σmn), n /∈ C

Wm(xC ) =
wmFC (xC |µmC ,σmC )∑M
j=1 wjFC (xC |µjC ,σjC )

≈ nearly binary values

PREDICTION: conditional expectation x̄n given the defined part xC :

x̄n = En|C{xn|xC} =

∫
xnPn|C (xn|xC )dxn =

∑
m∈M

Wm(xC )µmn ≈ µm0n
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Example 8: Image Inpainting by Local Prediction

COMPUTATIONAL DETAILS OF NUMERICAL EXPERIMENTS:

image size 1280 x 960 pixels

square sliding window 7x7 pixel with cut-off corners includes 37 interior
pixels

data set: scanning the image by sliding window: ⇒ |S| ≈ 106 vectors

three spectral components at 37 interior pixel ⇒ dimension x : N=111

number of mixture components in different experiments: M ≈ 20÷ 80

randomly initialized components with uniform initial weights

the stopping rule based on relative increment threshold ∆L ≈ 10−3

(corresponds to cca 10 - 20 iterations)

model computing time: cca ≈ 15 - 30 minutes (standard PC)

stepwise prediction of missing parts completes the image in 3 to 5
iterations (depends on the form and size of missing parts)
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Example 8:Image Inpainting by Local Prediction

damaged source image
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Example 5: Image Inpainting by Local Prediction

inpainted image
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Example 8: Image Inpainting by Local Prediction

damaged source image
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Example 8: Image Inpainting by Local Prediction

inpainted image
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Example 8: Image Inpainting by Local Prediction

damaged source image
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Example 8: Image Inpainting by Local Prediction

inpainted image
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Example 9: Interactive Statistical Model of Census Data

PRINCIPLE: interactive information retrieval from statistical model
(Grim et al. 1992, 1995, 2001, 2004, 2009, 2010)

statistical model of the database:

P(x) =
M∑

m=1

wmF (x |m) =
M∑

m=1

wm

N∏
n=1

pn(xn|m)

conditional distributions Pn|C (xn|xC ), n /∈ C given xC = (xi1 , . . . , xik ):

Pn|C (xn|xC ) =
∑
m∈M

Wm(xC )fn(xn|m), Wm(xC ) =
wmFC (xC |m)∑M
j=1 wjFC (xC |j)

Interactive statistical model:

distributable without any confidentiality concerns

⇒ suitable for medical data

advantage: high accuracy of the model

advantage: easily distributed because of information compression

the model can be computed from incomplete data
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Example 9: Interactive Statistical Model of Census Data
Questions in the statistical model of the 2001 Czech Census.

Text of question # of values Missing in % Entropy in %

1. Region of residence 14 0.00 96.88
2. Type of residence 3 0.00 32.92
3. Economic activity 10 0.80 67.80
4. Birth place (relatively) 6 1.95 74.65
5. Religion 6 0.00 60.57
6. Occupation type 14 3.89 68.33
7. Sex 2 0.00 99.95
8. Marital status 4 0.55 81.01
9. Education 14 1.11 78.04

10. Age 9 0.03 96.09
11. Category of flat 5 0.53 27.81
12. Bathroom 5 0.59 14.02
13. Size of flat 7 0.64 80.62
14. Internet and PC 4 2.85 49.11
15. Legal relation to flat 9 0.39 72.43
16. Gas supply 3 0.78 64.54

17. Number of rooms over 8m2 7 0.64 80.57
18. Number of cars in household 4 3.39 71.32
19. Number of persons in flat 6 0.00 93.79
20. Vacational property 6 7.45 42.10
21. Telephone in flat 5 1.80 80.88
22. Water supply 4 0.35 8.02
23. Type of heating 6 0.53 74.81
24. Toilet 6 0.50 16.73

There are 10,230,060 respondents 1,524,240 incomplete records and 2,933,427 missing answers.
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Example 9: Interactive Statistical Model of Census Data

Model estimation: (Grim et al. 2010)

estimation of parameters from incomplete data

alternatively: estimation of missing data first

Non-response frequency for individual questions.

Remark: The number of incomplete records is 1,524,240, the total number
of missing values is 2,933,427.
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Example 9: Interactive Statistical Model of Census Data

Accuracy of information retrieval from the statistical model

Evaluation of reproduction error for 26 mil. combinations of at most five
values xn. (Only sub-populations greater then 1571 respondents are
considered - cf. paper for details.)

A5 = {xC = (xi1 , . . . , xi5 ) : N(xC ) > 1571}, N(A5) = 26 425 727

true sub-population size: N(xC )

estimated sub-population size: P(xC )N

mean absolute reproduction error Ea:

Ea =
1

N(A5)

∑
xC∈A5

|P(xC )N − N(xC )|, P(xC ) =
M∑

m=1

wm

5∏
j=1

pij (xij |m)

mean relative reproduction error Er in %:

Er =
100

N(A5)

∑
xC∈A5

|P(xC )N − N(xC )|
N(xC )



Product Mixtures Pattern Recognition Mixture Models Literature Textures Texture Defects Mammographic Screening Forenzńı Inpainting Census Census

Example 9: Interactive Statistical Model of Census Data

Relative and absolute error of the statistical census model

(24 variables, incomplete data, M=15000 components)

(A4 ≈ combinations of up to four values, A5 ≈ combinations of up to five values)

Error Criterion Test A4 Test A5

mean relative reproduction error in %: 4.10 4.20
standard deviation of the relative error: 6.37 5.84
maximum relative reproduction error in %: 368.62 368.62

mean absolute reproduction error: 460 338
standard deviation of the absolute error: 951 655
maximum absolute reproduction error: 45779 45779

Number of test subpopulations 3 503 448 26 425 727

⇒ the mean error of displayed histogram columns is 4.17%

interactive model and publication: http://ro.utia.cas.cz/census/
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Example 9: Interactive Statistical Model of Census Data

Age distributions of three different sub-populations

Remark: Analysis of small sub-populations is limited by model accuracy.
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Example 9: Interactive Statistical Model of Census Data

Education of divorced Men in Comparison with Whole Population

Conclusion: Less educated men divorce more frequently.
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Example 9: Interactive Statistical Model of Census Data

Flat Quality of Men on Maternity Leave

Conclusion: Men on maternity leave come from poverty-stricken families and
probably “solve” a difficult economical situation (unemployment).
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Example 10: Probabilistic Neural Networks

Statistical Approach to Pattern Recognition
x = (x1, . . . , xN) ∈ X : N-dimensional binary data vectors

Ω = {ω1, ω2, . . . , ωJ}: finite number of classes

P(x |ω)p(ω), ω ∈ Ω: conditional distributions of classes

Bayes formula: to classify any given x ∈ X

p(ω|x) =
P(x |ω)p(ω)

P(x)
, P(x) =

∑
ω∈Ω

P(x |ω)p(ω)

Probabilistic Neural Networks (PNN, Grim et al. 1999-2012):

approximation of P(x |ω) by mixtures of product components

P(x |ω) =
∑

m∈Mω

wmF (x |m), F (x |m) =
∏
n∈N

fn(xn|m),
∑

m∈Mω

wm = 1.

P(x) =
∑
m∈M

f (m)F (x |m), f (m) = p(ω)wm, M =
⋃
ω∈Ω

Mω

Components ≈ Neurons ≈ complete interconnection of neurons

Output Layer: p(ω|x) =
∑

m∈Mω
q(m|x), q(m|x) = F (x|m)f (m)∑

j∈M F (x|j)f (j)
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Example 10: Probabilistic Neural Networks

structural mixture model: incomplete interconnection

ym = log q(m|x) = log f (m) +
∑
n∈N

φmn log
fn(xn|m)

fn(xn|0)
− log[

∑
j∈M

G (x |j , φj)f (j)]

q(m|x) ≈ probability of “spike” given the input pattern x

f (m) ≈ spontaneous activity of the m-th neuron

log fn(xn|m)
fn(xn|0) ≈ contribution of the input xn to the activation of m-th neuron

log [
∑

j∈M G (x |j , φj)f (j)] ≈ common “norming” term (lateral inhibition)

”synaptical weight”: log
fn(xn|m)

fn(xn|0)
= log

fn(xn|m)

Pn(xn)
= log

q(m|xn)

f (m)

Hebb’s postulate of learning (Hebb, 1949)

“When an axon of cell A (≈ n) is near enough to excite a cell B (≈ m) and
repeatedly or persistently takes part in firing it, some growth process or
metabolic changes take place in one or both cells such that A’s efficiency as
one of the cells firing B, is increased.”
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Example 10: Probabilistic Neural Networks

probabilistic neuron: interpretation of mixture components

ym = log q(m|x) = log f (m) +
∑
n∈N

φmn log
fn(xn|m)

fn(xn|0)
− log[

∑
j∈M

G (x |j , φj)f (j)]

Remark: The structure of PNN can be optimized by EM algorithm.
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EM algorithm for Multivariate Bernoulli Mixtures

basic EM algorithm in C++: mixture of Bernoulli distributions

Remark: In case of small dimension NN only !. Back
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Example 3: Classification of Text Documents

log-likelihood criterion:

L =
1

|Sc |
∑
x∈Sc

log[
∑

m∈Mc

G(x |θm,φm)wm], Sc = {x1, . . . , xKc }

EM algorithm:

q(m|x) =
G(x |θm,φm)wm∑

j∈Mc
G(x |θj ,φj)f (j)

, m ∈Mc , n ∈ N , x ∈ Sc

x̃ (m)
n =

1

|Sc |
∑
x∈Sc

xnq(m|x), |x̄ |(m) =
1

|Sc |
∑
x∈Sc

|x |q(m|x)

w
′
m =

1

|Sc |
∑
x∈Sc

q(m|x), θ
′
mn =

x̃
(m)
n

|x̄ |(m)

φ
′
mn =

{
1, γ

′
mn ∈ Γ

′
r ,

0, γ
′
mn 6∈ Γ

′
r ,

, γ
′
mn = x̃ (m)

n log
θ
′
mn

θ0n
+ |x̄ |(m)(θ

′
0n − θmn)

Γ
′
r is the set of r largest values γ

′
mn
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