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Local Statistical Gaussian Mixture Model

Digitized color texture image:

Z = [z ij ]
I J
i=1 j=1 , z ij = (zij1, zij2, zij3) ∈ R3 ≈ RGB spectral values

Assumption:

local statistical properties of spectral pixel values are specific for different
parts of texture image

window interior (patch): x = (x1, x2, . . . , xN) ∈ X , X = RN

Method:

approximation of the joint multivariate probability density P(x) by normal
mixture of product components:

P(x) =
∑
m∈M

wmF (x |µm,σm) =
∑
m∈M

wm

∏
n∈N

fn(xn|µmn, σmn)

M = {1, . . . ,M}, N = {1, . . . ,N} ≈ index sets
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EM Algorithm for Normal Product Mixtures

dat set: S = {x (1), . . . , x (K)} ≈ by shifting observation window

components: F (x |µm,σm) =
∏
n∈N

1√
(2π)σmn

exp
{
− (xn − µmn)2

2σ2
mn

}
log-likelihood criterion:

L =
1

|S|
∑
x∈S

log[
∑
m∈M

wmF (x |µm,σm)]

EM Algorithm:

q(m|x) =
wmF (x |µm,σm)∑
j∈M wjF (x |µj ,σj)

, x ∈ S, m ∈M

w
′

m =
1

|S|
∑
x∈S

q(m|x), µ
′

mn =
1∑

x∈S q(m|x)

∑
x∈S

xnq(m|x)

(σ
′

mn)2 = −(µ
′

mn)2 +
1∑

x∈S q(m|x)

∑
x∈S

x2nq(m|x), n ∈ N
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Model Estimation - Computational Experiment

source texture images of size 512x512 pixels (|S| ≈ 250000)

context information contained in q(m|x) increases with window size but,
simultaneously, the related textural properties become less local

dimension of the window data vector x : N = 1143 = 3x381
(for window size 21x21 pixels with cut-off corners)

no feature extraction or dimensionality reduction technique applied to
pixel variables

number of mixture components: M1 = 64, M2 = 59 and M3 = 64

EM algorithm: random initialization, 10 - 20 iterations

(!) image patches obtained by shifting the window are overlapping and
therefore the corresponding data vectors are not independent

⇒ data set S is less representative (bad sampling properties)
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Prague Segmentation Benchmark - Example 1

original image component means

window size: 21x21 pixels with cut-off corners

dimension of data vector x : N = 1143

number of mixture components: M = 64
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Prague Segmentation Benchmark - Example 2

original image component means

window size: 21x21 pixels with cut-off corners

dimension of data vector x : N = 1143

number of mixture components: M = 59
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Prague Segmentation Benchmark - Example 3

original image component means

window size: 21x21 pixels with cut-off corners

dimension of data vector x : N = 1143

number of mixture components: M = 64



Mixture model Estimation Segmentation Topology Conclusions Experiment Texture Examples Theoretical Aspects

Theoretical Aspects of Mixture Model Application

unlike other fields (e.g. texture modelling) the estimated Gaussian
mixture P(x) is applied to the “training” data set S again

limited representativeness of the set S is less relevant since P(x) is not
applied to the data not contained in S
log-likelihood criterion optimally “fits” the estimated mixture P(x) to
the data set S (risk of “over-fitting” is less relevant)

⇒ mixture component means (in window arrangement) correspond to
different variants of patches occurring in the shifted window

informativity of the estimated mixture model can be verified visually by
successful texture synthesis References

Hypothesis:

Different parts (segments) of texture image can be characterized by specific
subsets of mixture components, i.e. by decomposing the Gaussian mixture
P(x) into corresponding sub-mixtures.
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Segmentation Principle

partition of the index set M into disjunct subsets Mk :

= = {M1,M2, . . . ,MM}, ∪k∈MMk =M, Mk ∩Mj = ∅, k 6= j

mixture decomposition into corresponding sub-mixtures:

P(x) =
∑
k∈M

Pk(x) =
∑
k∈M

∑
m∈Mk

wmF (x |µm,σm),

classification of central pixel by window neighborhood vector x :

p(k|x) =
Pk(x)

P(x)
=

∑
m∈Mk

q(m|x), Pk(x) =
∑

m∈Mk

wmF (x |µm,σm)

partition of the set S into subsets Sk : (ties arbitrarily decided)

Sk = {x ∈ S : p(k |x) ≥ p(j |x),∀j ∈M}, k ∈M

< = {S1,S2, . . . ,SM}, ∪k∈MSk = S, Sk ∩ Sj = ∅, k 6= j .
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Iterative Segmentation Algorithm

Criterion: mean probability of correct pixel classification

Q(=,<) =
1

|S|
∑
k∈M

∑
x∈Sk

p(k |x) =
1

|S|
∑
k∈M

∑
x∈Sk

∑
m∈Mk

q(m|x)

Algorithm 1: (initial partition of =0 :Mk = {k}, k ∈M)

STEP 1: define subsets Sk , k ∈M given the partition = of M:

Sk = {x ∈ S :
∑

m∈Mk

q(m|x) ≥
∑

m∈Mj

q(m|x),∀j ∈M}

STEP 2: define subsets Mk , k ∈M given the partition < of S:

Mk = {m ∈M :
∑
x∈Sk

q(m|x) ≥
∑
x∈Sj

q(m|x),∀j ∈M}

Remark: Algorithm converges monotonically in a finite number of steps.
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Topological Principle

(!) mixture components in high dimensions are nearly non-overlapping:

Problem of over-segmentation:

The “bottom up” Algorithm 1 maximizing the criterion Q(=,<) converges in
few iterations to a highly over-segmented texture.

Idea: robust pixel classification by using ε-neighborhood Dε(x)

Dε(x) = Dε(x(i , j)) = {x(k , l) ∈ S : (i − k)2 + (j − l)2 < ε2}

Criterion: setting Dε = |Dε(x)| we can write

Q(=,<) ≈ 1

|S|
∑
k∈M

∑
x∈Sk

p(k |Dε(x))
.

=
1

|S|
∑
k∈M

∑
x∈Sk

1

Dε

∑
y∈Dε(x)

p(k|y)

since

p(k |Dε(x)) =
∑

y∈Dε(x)

Pk(y)

P(Dε(x))
=

∑
y∈Dε(x)

P(y)

P(Dε(x))
p(k |y)

.
=

1

Dε

∑
y∈Dε(x)

p(k|y)
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Topologically Modified Segmentation Algorithm

Criterion: mean conditional probability of correct pixel classification

Qε(=,<) =
1

|S|
∑
k∈M

∑
x∈Sk

1

Dε

∑
y∈Dε(x)

∑
m∈Mk

q(m|y)

Algorithm 2: (initial partition of =, decision neighborhood radius ε)

STEP 1: define subsets Sk , k ∈M given the partition = of M:

Sk = {x ∈ S :
∑

y∈Dε(x)

∑
m∈Mk

q(m|y) ≥
∑

y∈Dε(x)

∑
m∈Mj

q(m|y),∀j ∈M}

STEP 2: define sub-sets Mk , k ∈M given the partition < of S:

Mk = {m ∈M :
∑
x∈Sk

∑
y∈Dε(x)

q(m|y) ≥
∑
x∈Sk

∑
y∈Dε(x)

q(j |y),∀j ∈M}

Remark: After convergence the Algorithm 2 continues with an increased
decision neighborhood radius ε.
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Prague Segmentation Benchmark - Example 1

initial over-segmentation final segments

segmentation stopped for decision neighborhood: ρ = 28
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Prague Segmentation Benchmark - Example 2

initial over-segmentation final segments

segmentation stopped for decision neighborhood: ρ = 33
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Prague Segmentation Benchmark - Example 3

initial over-segmentation final segments

segmentation stopped for decision neighborhood: ρ = 24
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Conclusions

Color Texture Segmentation by Using Local Statistical Model

local texture properties described by Gaussian product mixture

mixture parameters estimated from image patch data obtained by
pixelwise shifting a suitably chosen observation window

no feature extraction or dimensionality reduction technique is applied to
the spectral pixel variables

mixture component means (in window arrangement) correspond to
different variants of patches occurring in the shifted window

texture segments can be identified by corresponding sub-mixtures

simple segmentation criterion in terms of probability of correct pixel
classification is applied

the proposed iterative algorithm is shown to maximize the segmentation
criterion monotonically in a finite number of steps

topological version of the algorithm is controlled by decision
neighborhood radius
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