Matematické modely jednoduchých fyzikálních jevů jsou známé a dobře prozkoumané. Pro složitější jevy v nich však figuruje mnoho neznámých parametrů a často vedou k velmi složitým výpočtům. Je proto výhodné hledat pro tyto úlohy zjednodušené modely, které dobře reprezentují reálný problém. Běžně používané black-box modely jako neuronové sítě potřebují k naučení velké množství dat a často je obtížné porozumět jak...
Shlukování je klasická statistická metoda používaná ve strojovém učení na datech, na kterých je definována vzdálenost (například Eukleidova vzdálenost vektorů). V praxi se ovšem setkáváme s daty, která mají složitější relační strukturu, např. obsah nákupního košíku v e-shopu. Definice vzdálenosti mezi takovými daty je mnohem složitější. Nabízí se využít metody statistického popisu dat, které se vzdálenosti učí....
Modelování stavu plasmatu v Tokamaku je náročné díky velkému množství fyzikálních dějů a neúplnému měření. Simulační nástroje vyžadují velké množství času na výpočet. Cílem práce je ověřit možnosti využití neuronových sítí jako univerzálního aproximátoru. Klasické neuronové sítě byly aplikovány již na několik problémů v oblasti diagnostiky plasmatu, použití nových architektur, např. transformerů je stále...
Physics-informed neural network (PINN) jsou aplikací neuronových sítí na problém řešení diferenciálních a parciálních diferenciálních rovnic. V principu jednoduchá technika, zalozená na náhodné mřižce a minimalizaci chyby splnění diferenciální rovnice v těchto bodech pro neuronovou síť. Od svého přestavení před několika lety se tato technika vyvinula do bohaté formy metod podporujících práci s neurčitostí,...
Typické architektury neuronových sítí přepokládají, že matice vah obsahují libovolné hodnoty. To vede na velmi komplexní sítě, které často takzvané přetrénovánají. Experimentálně bylo ukázáno, že použitím řídkých váhových matic dojde ke zlepšení vlastností sítě. Nalezením řídkých parametrizací se zabývajá olast Bayesovské statistiky s tzv. shrinkage priors, tj. apriorními rozloženími preferujícícmi nulové hodnoty...
V souvislosti s prudkým rozmachem zařízení (agentů) se značným výpočetním potenciálem, dostatkem paměti a schopností vzájemné komunikace došlo v posledních dvou dekádách k rychlému rozvoji metod pro distribuované modelování nejrůznějších procesů. Namátkou - distribuovaný Kalmanův filtr, RLS či particle filter. Zatímco většina stávajících řešení je orientována na jeden konkrétní model, použití bayesovského...
Real processes result from interactions of relatively independently deciding but mutually interacting parts, modelled predominantly as multi-agents’ systems. A sufficiently complete, normative and algorithmically implementable theory is still missing, which is dearly paid by effort and quality in solving specific problems. Preliminary results indicate that such a theory can be created by combining Bayesian...
The quality of optimized decision-making algorithms (estimation, forecasting, classification, hypothesis testing, economic, medical or political decision-making, management, etc.) depends, often critically, on the choice of their parameters (order of models, weight of individual attributes in multi-criteria decision-making, probability of mutations in genetic algorithms, etc.). Therefore, it is desirable to set...
Even highly creative people (scientists, artists, influencers...) are able to create a limited number of significant outputs in life. Predicting the extent to which their creative capacity is exhausted is important for making decisions affecting their careers. The work is focused on the creation and data-driven personalization of the personal creative productivity drawing model.
Při detekci radioaktivity v ovzduší je zásadním úkolem určení lokace úniku a jeho časového průběhu. Zatímco lokace bývá velmi často známa, časový průběh a celkové množství uniklé látky bývá většinou známo jen jako hrubý odhad nebo vůbec. Hlavním úkolem navrhované práce je určení časového průběhu úniku z dostupných terénních měření. Toho lze dosáhnout optimalizací mezi naměřenými hodnotami a mezi numerickými...
Recursive estimation of model parameters is a key part of adaptive systems predicting or influencing their complex random environment. Mostly, the models do not allow the desired exact Bayesian estimation and therefore it is necessary to implement them approximately. In this case, it is necessary to forget the invalid knowledge, because otherwise the behavior of the estimated model and the modeled environment...
Recursive estimation of model parameters is a key part of adaptive systems predicting or influencing their complex random environment. Most models do not allow us to use the desired exact Bayesian estimation. Therefore it is necessary to implement them approximately. Monte Carlo procedures allow this, but their efficiency is not great.
The topic of the bachelor/diploma thesis is focused on the selection and implementation of a suitable numerical method for the predictive control algorithm, which uses a default physical nonlinear model describing the robot's dynamics. Numerical methods should be used in the construction of prediction equations that express the dependence of future planned outputs on unknown...
The theme of the bachelor/diploma thesis is focused on the motion modelling of industrial articulated robots. Modelling will deal with the investigation of parametric models of both planar and spatial curves containing the so-called geometric parameter. This parameter determining the position on the given curve will be used in the design of a suitable time parameterization of the...